dreboeds

W ems
) 3 ’%
Universiteé A& T !nserm
dePoitiers Moty

Mihaly LEIWOLF
Model Ensembling and Machine | i

Learning Approaches to Predict the First | o st
e eomme o . Vincent ARANZANA-CLIMENT &
Dose of Amoxicillin in Intensive Care

Jean-Baptiste WOILLARD



Burn patient

A priori precision dosing Body weight > 72 kg

Renal function 2 67 mL.min! Intensive care patient

Ensembling of model predictions
based on patient characteristics

v’ Faster target attainment
v' Fewer concentration measurements

Measure drug concentration

In target interval Not in target interval

. : Continue with a posteriori
Precision dosing done . .
precision dosing




PopPK model ensembling

Model 1 Model 2 Model 3

ICU ICU > 30 kg.m2 ICU
< 6 years 52 years
34 kg.m™

Model selection Model ensembling
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Objective & workflow

Predict a personnalized amoxicillin dose based on plasmatic trough

concentrations to reach the concentration range of 40-80 mg.L".
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cellieaon o Simulation of subjects Deye!opment ?‘f Validation using clinical data
bibliographic PopPK J d prioft approacnes 2

and concentrations * Model ensembling from 2 ICUs
models : :
* Machine learning

*Guilhaumou et al., Crit Care. 2019 @



Models and covariates
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1Carlier et al., J Antimicrob Chemother. 2013
2Fournier et al. Antimicrob Agents Chemother. 2018

3Mellon et al., J Antimicrob Chemother. 2020 ~\
“Rambaud et al. J Antimicrob Chemother. 2020 T}

creatinine




Simulation of wrtual subjects & concentrations

Correlations from MIMIC-IV*
(database of ~16000 ICU
patients)
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median & IQR

Covariate sampling from the
multivariate distribution

*Johnson et al., Sci Data. 2023
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Models and covariates — simulated data

Distribution of continuous covariates
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Models and covariates — clinical data

Distribution of continuous covariates
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Regression tree (RT)-informed ensembling

Decision tree for
Carlier model

|.|
80 kg WT
1.5 mg. dL? > 128 kg

Cpred o Ctrue

Ctrue

Bias =
0.12

<1.2 mg.dL!

Bias =

i Tl
oo Carlier weight =

0.06
*before normalization




Factor Analysis of Mixed Data (FAMD)
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Machine learning

@ | el Burn status
Body weight O creatinine
Obesity Q
BMI
Age Z Target dose

k nearest neighbors

Number of
administrations

Support vector machine Stacking A~

( La SSO) tidymodels
Random forest

XGBoost




Method ensembling

Decision tree to predict

o the best suited method for

each subject

80 kg
1.5 mg. dL > 128 kg

4 ML-based on 4
FAMD PopPK-based

methods
No

Random
forest

<1.2 mg.dL! .2 mg.dl

[ J” Regression
tree inf.
ens.

Random

forest




Results

Standard dose 18 % Standard dose 27 %

Carlier 29 % Carlier 41 %

Fournier 33 % Fournier 31 %
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Results
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Kidney failure patients

Simulated: 3.5 %

Discussion Clinical: 16 %
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Conclusion

No need for model selection

Methods sensitive to overfitting 2>
retraining with local clinical data

FAMD: reliable & extrapolable, but sensitive to
models with lower performance in their own cohort

Better applicable to a molecule with a larger
number & more diverse models
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A priori precision dosing method repertoire

Empirical Single model approach PopPK model ensembling

Carlier Uninformed

« Standard dose Fournier Weighed

Mellon Classification tree informed
Rambaud Regression tree informed
Meta model FAMD

* Nomogram

ML + PopPK ensembling ensembling

Machine learning . * MEth‘_)d ensembling
ML ensembling (decision tree)

Support Vector Machine

k nearest neighbors e Stacking

Random forest
XGBoost

* ML ensembling (decision tree)




