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Talk Overview

• The Besag York Mollié model: workhorse of spatial epidemiology.

• Computational Concerns:

• Coding the BYM2 model.
• Getting the map you want from the geo-coordinates you have.

• Example: accounting for time plus roads, rails, and airplanes.

• Example: accounting for disconnected regions.



Spatial Smoothing For Areal Data

• Counts of (rare) events in small-population regions are noisy
• Borrow information from neighboring areas

• Besag, 1973, 1974: Conditional Auto-Regressive Model (CAR), and
Intrinsic Conditional Auto-Regressive (ICAR) model

• Gaussian Markov Random Field (GMRF)

• CAR model has parameter α for the amount of spatial dependence;
• CAR model requires computing matrix determinants
• Cubic operation (ON3) (calculated at every step of the sampler)

• ICAR simplification: let α == 1 (complete spatial dependence)
• ICAR model computes pairwise distance between neighbors
• Linear operation (ON)



Neighbor Relationship

• The binary neighbor relationship (written i ∼ j where i ̸= j) is encoded as
• 1 if regions ni and nj are neighbors
• 0 otherwise

• For ICAR models, neighbor relationship is
• symmetric - if i ∼ j then j ∼ i
• not reflexive - a region is not its own neighbor (i �∼ i)

• Many possible definitions of “neighbor”
• ‘rook’ - areas share a bounding line
• ‘queen’ - areas share a boundary point
• mobility networks - amount of travel between areas



Intrinsic Conditional Auto-Regressive (ICAR) Model
• Conditional specification: multivariate normal random vector ϕ,

each ϕi is conditional on the values of its neighbors

• Joint specification rewrites to Pairwise Difference:

p(ϕ) ∝ exp

−1
2

∑
i∼j

(ϕi − ϕj)2


• Centered at 0, assuming common variance for all elements of ϕ.

• Each (ϕi − ϕj)2 penalizes the distance between the values of neighboring regions.

• ϕ is non-identifiable - adding a constant to ϕ washes out of ϕi − ϕj

• Sum-to-zero constraint centers ϕ



Besag York Mollié (1991) BYM Model

• Basic regression Lognormal Poisson regression plus 2 components for spatial
smoothing

• spatial effects: ICAR component
• random effect: per-region standard Normal

• Formula: µ + xβ + ϕ + θ

• µ is the fixed intercept.
• x is the design matrix, β is vector of regression coefficients.
• ϕ is an ICAR spatial component
• θ is an vector of ordinary random-effects components.



BYM2 model: Riebler et al, 2016
• Penalized Complexity (Simpson et al, 2014)

• spatial and random effects must have Var(ϕi) ≈ 1
• combined spatial and random effects have mixing parameter, scale parameter,

(following Leroux, 2000)

• BYM2 model:
µ + xβ +

(
(
√

ρ/s ) ϕ∗ + (
√

1 − ρ) θ∗
)

σ

where:
• σ ≥ 0 is the overall standard deviation.
• ρ ∈ [0, 1] - proportion of spatial variance.
• ϕ∗ is the ICAR component.
• θ∗ ∼ N(0, 1) is the vector of ordinary random effects
• s is a scaling factor s.t. Var(ϕi) ≈ 1, computed from neighbor graph, i.e. s is data,

not a parameter.



Coding Challenge: from Math to Model

µ + xβ +
(

(
√

ρ/s ) ϕ∗ + (
√

1 − ρ) θ∗
)

σ



Stan ICAR Model
Encode neighbor information as graph edgeset, i.e. pairs of indices for neighbors i , j :

data {
int<lower = 0> N; // number of areal regions
int<lower = 0> N_edges; // number of neighbor pairs
array[2, N_edges] int<lower = 1, upper = N> neighbors; // columnwise adjacent
...

Use Stan’s sum_to_zero_vector to identify phi

parameters {
sum_to_zero_vector[N] phi; // spatial effects
...

Use Stan’s vectorized operations and multi-indexing to compute ICAR prior

model {
target += -0.5 * dot_self(phi[neighbors[1]] - phi[neighbors[2]]);
...



Stan Constrained Parameter sum_to_zero_vector

sum_to_zero_vector[K] beta;

• On the unconstrained scale, beta is length K - 1 (because the last is determined by
the first K - 1).

• Stan computes on the unconstrained scale.
• Constraining transform keeps variance of all elements equal.

• Outperforms “hard” and “soft” sum-to-zero constraints
• “hard” sum-to-zero: $Nˆ{th} element == - sum(elements 1 : N-1)
• “soft” sum-to-zero: constrain sum(beta) ~ Normal(0, epsilon) epsilon = 0.001

• The larger, more complex the model, the bigger the difference.

• See Stan case study The Sum-to-Zero Constraint in Stan

https://mc-stan.org/learn-stan/case-studies/sum_to_zero_vector.html


From Geospatial Maps to Neighbor Graphs

• GIS data: points, lines, and bounding polygons
• Common format: shapefile
• Python: GeoPandas - add support for geographic data to pandas objects.
• R: sf Simple Features for R - “spatial analysis simplified”

• Neighbor graph
• Graph nodes denote regions, edges denote neighbors
• GDAL-based utilities compute neighbor graph from geo-dataframe geometry column.

• Shapefiles may not line up with your data.
• Shapefile region IDs may differ from dataset IDs.
• Map boundaries may differ from idealized boundaries.

• Neighbor graphs are difficult to edit.
• Easy to get node indices wrong.
• Difficult to maintain symmetry

https://en.wikipedia.org/wiki/Shapefile
https://geopandas.org/en/stable/index.html
https://r-spatial.github.io/sf/
https://gdal.org/en/stable/


Example Dataset: NYC traffic accidents

Dataset taken from Bayesian Hierarchical Spatial Models: Implementing the Besag York
Mollié Model in Stan.

• Aggregated counts of car vs. child pedestrian traffic accidents, localized to US
Census tract. Per-tract data includes:

• raw counts of accidents, population
• measures of foot traffic, car traffic
• socio-economic indicators: median income, neighborhood transiency

• Starting point: NYC Planning Census Blocks
• ” These boundary files are derived from the US Census Bureau’s TIGER data products

and have been geographically modified to fit the New York City base map.”

https://www.sciencedirect.com/science/article/pii/S1877584518301175
https://www.sciencedirect.com/science/article/pii/S1877584518301175
https://www.nyc.gov/content/planning/pages/resources/datasets/census-blocks


NYC Census Blocks

• Study focus is on pedestrians
• Map doesn’t respect geography

• East River separates Manhattan
from Brooklyn, Queens

• Geography doesn’t respect ICAR
model

• Graph must be fully connected -
else elements of ϕ are undefined.



Ward et al Mobility Network Graph
• Online: Fig 1
• Northern england shows

divide between east and
west coasts

https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1011580.g001


BYM2 Model for Spatio-Temporal Smoothing

• Neighbor graph reflects mobility networks
• Extend the BYM2 model to include a daily-level random effect, i.e. three

components:
• Spatial effect θi

• Ordinary per-region random effect ϕi

• Ordinary per-region, per_day random effect ϕi,t

• Proportion of variance ρ is a simplex



Ward et al Simulation Study

https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1011580.t003



2017 BYM2 Case Study - Fully Connected Map

• Map editing process
• Identify pairs of tracts to

connect
• Write utility functions to munge

data structures

• Extremely tedious and error prone
• Must be scripted for reproducibility



BYM2 Multicomp Model
• Make the model respect the geography

• Extends the BYM2 model to account for disconnected graphs and islands, following
the recommendations from A note on intrinsic Conditional Autoregressive models
for disconnected graphs, Freni-Sterrantino et.al. 2018.

• Component nodes are given the BYM2 prior
• Singleton nodes (islands) are given a standard Normal prior
• Compute per-connected component scaling factor
• Impose a sum-to-zero constraint on each connected component

• See R and Python notebooks from GeoMED 2024 Workshop
• GitHub Repository: mitzimorris/GeoMED_2024
• Notebook “h6_bym2_multicomp”

https://arxiv.org/abs/1705.04854
https://arxiv.org/abs/1705.04854
https://github.com/mitzimorris/geomed_2024


Scaling factor, following Riebler
• Geometric mean of the variances of the spatial covariance matrix
• Neighborhood structure matrix is the precision matrix
• Expensive to compute, but as data, is only done once

get_scaling_factor = function(nbs) {
# Create ICAR precision matrix
N = length(nbs)
adj_matrix = nb2mat(nbs,style="B")
Q = Diagonal(N, rowSums(adj_matrix)) - adj_matrix

# Get covariance matrix, compute the geometric mean of diagonal
Q_pert = Q + Diagonal(N) * max(diag(Q)) * sqrt(.Machine$double.eps)
Q_inv = q_inv_dense(Q_pert, adj_matrix)
return(exp(mean(log(diag(Q_inv)))))

}



Different Maps Have Difference Scaling Factors

Brklyn-Queens: 0.71 Bronx: 0.57 Manhattan: 0.8 Staten Island: 0.36

Fully connected graph has scaling factor of 1.3



Comparison of ICAR component estimates
• Systematic differences

due to per-component
scaling factors

• Minor differences from
removing spurious
connections
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