Modelling the viral dynamics of SARS-CoV-2 in the general community in a context of emerging variants

Maxime Beaulieu1

Florence Débarre², François Blanquart³, Jérémie Guedj¹

¹Université Paris Cité and Université Paris Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France ²Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, 75005 Paris, France ³ Centre interdisciplinaire de recherche en biologie, Collège de France, 75231 Paris, France

The COVID-19 pandemic – a changing landscape

From early 2021, the epidemic as been affected by:

- a strong vaccination campaign,
- and the emergence of variants of concerns (VoCs)

Successive waves of VoCs in France since 2021²

¹datavaccin-covid.ameli.fr (2023) ² N. Berrod, data from Santé publique France (2022)

Maxime BEAULIEU

4 July 2025

The COVID-19 pandemic – a changing landscape

From early 2021, the epidemic as been affected by:

- a strong vaccination campaign,
- and the emergence of variants of concerns (VoCs)

Successive waves of VoCs in France since 2021²

¹datavaccin-covid.ameli.fr (2023) ² N. Berrod, data from Santé publique France (2022)

Maxime BEAULIEU

4 July 2025

Study the impact of this changing landscape on viral dynamics in the population

- Variant of infection and patient characteristics may also shape the viral dynamics 3.4
 - Studies often conducted on small specific cohorts (symptomatic, commorbidities...) → Potential selection bias

³ Puhach et al, *Nat. Rev. Microbiol* (2023) ⁴ Yang et al, *The Lancet Microbe* (2023)

Study the impact of this changing landscape on viral dynamics in the population

- Variant of infection and patient characteristics may also shape the viral dynamics 3.4
 - Studies often conducted on small specific cohorts (symptomatic, commorbidities...) → Potential selection bias
- ➔ Analyzing millions of PCR tests performed in community labs

324,428 individuals (**407,375** obs) with:

- Date of symptom onset,
- Vaccination status,
- Variant of infection

Study the impact of this changing landscape on viral dynamics in the population

- Variant of infection and patient characteristics may also shape the viral dynamics 3.4
 - Studies often conducted on small specific cohorts (symptomatic, commorbidities...) → Potential selection bias
- ➔ Analyzing millions of PCR tests performed in community labs

324,428 individuals (**407,375** obs) with:

- Date of symptom onset,
- Vaccination status,
- Variant of infection

Can we model the community labs tests to identify patterns in viral load ?

Simple viral load dynamics model to identify patterns

Modelling the viral load dynamics : reconstruct the individual viral load trajectories with mathematical models

Identify how viral dynamics patterns are impacted by variants and vaccination

- \rightarrow Using simple mathematical models
- Estimate subset of key parameters related to viral dynamics
- → Adapted to massive datasets

Description of the data from community labs

Maxime BEAULIEU

4 July 2025

Description of the data from community labs

Maxime BEAULIEU

Description of the data from community labs

Maxime BEAULIEU

We estimate 4 parameters:

• Incubation period (days), T_i

We estimate 4 parameters:

- Incubation period (days), T_i
- Proliferation phase (days), T_g
- Viral load at peak (Ct), V_p

We estimate 4 parameters:

- Incubation period (days), T_i
- Proliferation phase (days), T_g
- Viral load at peak (Ct), V_p
- Clearance phase (days), T_c

We use the symptom onset to estimate the start of the infection (t_{inf}):

$$t_{inf} = tSS - T_i$$

• We deduct the time to peak (t_p) as followed:

$$t_p = t_{inf} + T_g$$

$$E[\Delta Ct(t)] = \begin{cases} 0 & t = t_{inf} \\ Vp \times \left(\frac{t-t_{inf}}{t_p-t_{inf}}\right) & t_{inf} < t < t_p \\ Vp & t = t_p \end{cases}$$

$$earance phase & t = t_p$$

$$E[\Delta Ct(t)] = \begin{cases} Vp & t = t_p \\ Vp + (V_{inf} - LOD - Vp) \times \left(\frac{t-t_p}{t_c - t_p}\right) & t_p < t < t_c \\ V_{inf} - LOD & t = t_c \end{cases}$$

with
$$\Delta Ct(t) = V_{inf} - Ct(t)$$
, $V_{inf} = 50$, and $LOD = 40$

We estimate 4 parameters:

- Incubation period (days), T_i
- Proliferation phase (days), T_g
- Viral load at peak (Ct), V_p
- Clearance phase (days), T_c

Maxime BEAULIEU

We estimate 4 parameters:

- Incubation period (days), T_i
- Proliferation phase (days), T_g
- Viral load at peak (Ct), V_p
- Clearance phase (days), T_c

We use the symptom onset to estimate the start of the infection (t_{inf}):

$$t_{inf} = tSS - T_i$$

• We deduct the time to peak (t_p) as followed:

$$t_p = t_{inf} + T_g$$

Vector of individual parameters
 θ[i] = {T_i[i], T_g[i], T_c[i], V_p[i]} is defined as followed:

 $\log(\theta[i]) = exp(\log(\mu_{\theta}) + \eta_{\theta[i]})$ Fixed effects: $\mu_{\theta} \sim N^{+}(\overline{m}_{\theta}, \sigma_{\theta})$ Random effects: $\eta_{\theta[i]} \sim N(0, \omega^{2})$

- 50 simulated datasets of 1000 individuals
- 50% of the population is infected

• Few repetead tests

- 50 simulated datasets of 1000 individuals
- 50% of the population is infected

•	Few	repetead	tests
---	-----	----------	-------

	Inclusion criteria	Percentage of infected individuals (P _{inf})	Timing of testing
Scenario 1	≥ 1 positive PCR	100%	Uniform from infection to clearance

Time since symptom onset (days)

- 50 simulated datasets of 1000 individuals
- 50% of the population is infected

• Few repetead tests

	Inclusion criteria	Percentage of infected individuals (P _{inf})	Timing of testing
Scenario 1	≥ 1 positive PCR	100%	Uniform from infection to clearance
Scenario 2	Entire population	50%	Uniform from infection to clearance

- 50 simulated datasets of 1000 individuals
- 50% of the population is infected

• Few repetead tests

	Inclusion criteria	Percentage of infected individuals (P _{inf})	Timing of testing
Scenario 1	≥ 1 positive PCR	100%	Uniform from infection to clearance
Scenario 2	Entire population	50%	Uniform from infection to clearance
Scenario 3	Entire population	50%	Mostly at symptom onset

- 50 simulated datasets of 1000 individuals
- 50% of the population is infected

• Few repetead tests

Likelihood definition in each scenario

• Modelling the viral dynamics of the infected individuals only (Scenario 1, 4)

 $L(y_{i,t}|\psi_i) = \mathbb{1}_{\{uncensored\}} f_N(x|E[y_{i,t}|\psi_i],\sigma) + \mathbb{1}_{\{censored\}} F_N(LOD|E[y_{i,t}|\psi_i],\sigma)$

Contribution if infected

Likelihood definition in each scenario

• Modelling the viral dynamics of the infected individuals only (Scenario 1, 4)

 $L(y_{i,t}|\psi_i) = \mathbb{1}_{\{uncensored\}} f_N(x|E[y_{i,t}|\psi_i],\sigma) + \mathbb{1}_{\{censored\}} F_N(LOD|E[y_{i,t}|\psi_i],\sigma)$

Determining infectious status and modeling viral dynamics for all individuals (Scenario 2, 3)

 $L(y_{i,t}|\psi_i) = P_{inf}[\mathbb{1}_{\{uncensored\}}f_N(x|E[y_{i,t}|\psi_i],\sigma) + \mathbb{1}_{\{censored\}}F_N(LOD|E[y_{i,t}|\psi_i],\sigma)] + (1 - P_{inf})[\mathbb{1}_{\{uncensored\}}P(false\ positive) + \mathbb{1}_{\{censored\}}P(true\ negative)]$

- $> f_N$ the Normal PDF, F_N the Normal CDF,
- LOD = Limit of detection
- \geq P(false positive) =0,0002, P(true negative) = 0,9998,
- $> P_{inf}$ the percentage of infected individuals in the dataset

Contribution if infected

Contribution if not infected

Evaluation of the model

- Chains convergence: R-hat 5
 - Ratio of intra-chain to inter-chain variance
 - Must be less than 1.1 for each parameter
- Error estimation: (Relative Estimates Error, REE in %)⁶

$$REE(\hat{\theta}^k) = \frac{\hat{\theta}^k - \theta^*}{\theta^*} \times 100$$

• Estimation accuracy: (Coverage rate, CR) ⁶

$$CR_{(1-\alpha)}(\theta) = \frac{1}{K} \sum_{k=1}^{K} \mathbb{1}_{\{\theta^* \in \widehat{CI}_{(1-\alpha)}^k\}}$$

• Goodness of fit: (Posterior Predictive Check)

⁵ Gelman et al, *Bayesian Data Analysis* (1995) ⁶ Morris et al, *Statistics in Medicine* (2018)

Maxime BEAULIEU

4 July 2025

Maxime BEAULIEU

4 July 2025

Maxime BEAULIEU

4 June 2025

Maxime BEAULIEU

4 July 2025

Coverage rate

Maxime BEAULIEU

4 July 2025

Posterior predictive checks

Maxime BEAULIEU

High computation time

Maxime BEAULIEU

4 July 2025

High computation time

500				•
475				
450				
400	Scenarios			
425	S1: \geq 1 positive PCR, tests from infection to clearance			
400	 S2: entire population, tests from infection to clearance S3: entire population, tests around symptom onset 			
375	S4: ≥ 1 positive PCR, tests around symptom onset			-
350	Bonds. Population of 35 0 times larger			
325				•
(s				
UNC 300-				•
<u>ک</u> 275				
₩ 250				
9 225				
. <u>Ĕ</u> 200				
175				
175				
150				•
125				
100				
75				
50				
25		_ :		
20				
0-	1 2	3	4	5
		Scenario		

Maxime BEAULIEU

How to run faster ?

- Vectorization of the code
- Within-chain parallelization

How to run faster ?

- Vectorization of the code
- Within-chain parallelization
- Data reduction

<u>The idea</u> : 2 individuals with the same Ct value at the same time from symptom onset contributes exactly the same way in the LL

→ weight the LL contribution by the number of individuals having exactly the sames observations at the same time

With 80% of individuals with only one positive PCR test \rightarrow could be highly valuable

- Vectorization of the code
- Within-chain parallelization
- Data reduction

The idea : 2 individuals with the same Ct value at the same time from symptom onset contributes exactly the same way in the LL

→ weight the LL contribution by the number of individuals having exactly the sames observations at the same time

With 80% of individuals with only one positive PCR test **→ could be highly valuable**

	Original dataset		Reduced dataset	
Number o	Number of individuals Number of observations		Number of individuals	Number of observations
580	6,635	738,403	38,368	104,542
		Divided by 15		
We were una	ble to run		The chains did not m	iix

Findings

• We can identify the main patterns of viral load with a piecewise linear model

Limitations

- High computation time due to Bayesian framework
- Prior distributions are weakly informative but centred on the true value of the parameter

Perspectives

- Impact of variant of infection and vaccination in patterns of viral load ?
- Model other acute respiratory diseases (Influenza and RSV) M2 internship Laura MULAS (April-October 2025)

Acknowledgements

Jérémie Guedj (IAME) Florence Débarre (IEES Paris, CNRS) François Blanquart (CIRB, Collège de France) Assil Merlaud (IAME)

Bob Carpenter (Flatarion Institute) for the responses in the Stan forum

Biogroup team

Université Paris Cité to fund this PhD

Maxime BEAULIEU

Université Paris Cité

ON INFECTIOUS DISEASES