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Omission bias - The definition

Definition of omission bias:

* The bias in the regressor coefficients (covariate effects) that a misspecified model infers when the
model is not including the true effect on all parameters

wr\PcLwr . . . -
» True clearance CL =6 - (—) } e'lCLi typical values 8, covariate coefficients g and random effects ;
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WT).BV,WT

» True volume of distribution V = 6y, L(— - e'vi
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» Misspecified clearance where weight is omitted: CL = 6., - e but still included on volume of
distribution

Statistics: Omitted variable bias (OVB), mostly work in linear models without random effects



Omission bias

The solution?

LE Include all covariates
@)

~ on all parameters
fP Is it really feasible?
o

* CPT Pharmacometrics Syst Pharmacol. 2024 May;13(5):710-728.



Inclusion bias




Omission bias 1n Pharmacometrics

Pharmacometrics: (V. Ivaturi, AC.
Hooker, MO. Karlsson Page 2011)

* Looked at one true covariate-
parameter at time

* No correlation structure in 11V
« Spare and rich data

* Investigating impact on bias and
type | error

Conclusions: Misspecified cov-param
relationships gives bias and inflated
type | error

Selection Bias in Pre-Specified

Covariate Models

Vijay D Ivaturi, Andrew C Hooker & Mats O Karlsson
Dept of Pharmaceutical Biosciences, Uppsala University, Sweden

Background

Covariate-parameter refavons are often chosen a priori, as In the full
madel approach. The assumption of such analyses are often that
estimates of pre-specified relations are unbiased. Similarly, in SCMs

an some parameters only (partial SCM), itis often assumed that
covariate relations for 3 parameter can be developed independently

Objective

+ To ivestgate the influence of misspeciication of pre-specified
covarite-parameter relations on bixs and Type 1 ervor

+  Explore porential predicears which can be used o predice risk of
biss and false positives

Methods
. Sparse and rich data were simulated from PK and PD models with
2 true eovariate (binary 0/1) parameter relationship
= Estimation models where the true effect was ignored and the

cavarlate was included on other parameters were fit to these data
(alternate madels)

= Bias and Type 1 error in parameter estmates of these alternate
models were evaluated

o et
covarase e

1 rue mee

Sirus

s ey

= Farrocn
— e
e

¥ prre—

Figue 1 Sehamic represemtoton of senchestic sietions and re-stimations

+ Predictors evaluated for Type 1 error inflation included: richness of
the data, correlation between estimates, shrinkage, magnitude of
covariate effects and sample size

Results

Table 1 : Bias of comaricts affect prdmtas (factionel offect) when the trm ralation & 2o
included in the sitermste medsl, Extimotes in red indcate b for covariete effest of srum
reiztas

Results

+ Substantial bias was observed in the estimated alternate covariate
relation when the true relation was not included (Table 1)
Testing of akernate reltions, as in  partial SCM, produced inflated
Type T errors when the true relation was not included (Table 2)

Table 1t S0P and Type | emor for afternate modes for PK based mades Extimates i
red insicate the power of detaecting the Uve casariate-pevameter relation
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Mo reliable predictors of this increased risk of bias and false positives
were identified, but sparseness of data and correlation between the
estimares of typical value parameters of the true and the alernate
rolatians correlated positively with risk of bias and filse positives
{Figure 2)
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Conclusions

*If prespecified covarite-parameter relaions are misspecified.
parameter esumates are biased
‘With covariate relation misspecification there is an inflazed Type 1
error when testng alernate models
Predictors to identfy these risks were not found



This work aims to provide insight into
omission bias and inclusion bias



Full model approaches

(aka Pre-specification methods)

FFEM (Full fixed effects model)

« Aims to include all pre-specified parameter-
covariate relationships in the model.

 Involves a user guided removal of correlated
covariates from the pre-specified scope to:
* manage estimation stability

« obtain independent estimates of the
covariate coefficients

Full Covariate Models as an Alternative to Methods
Relying on Statistical Significance for Inferences about

Covariate Effects: A Review of Methodology and 42
Case Studies

PAGE 2011
Athens, Greece

Marc R. Gastonguay, Ph.D.

s METRUM NETRLM

PAGE 2011

FREM (Full random effects model)

Is an innovative covariate modeling method.

Is unique in that it treats covariates as
observations instead of independent
variables.

Always includes all covariates on all
parameters associated with covariates.
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Why are correlations and missing covariate data not an

Issue for FREM?

The base model:

Wcr, cov(CL,V)

CL = GCL . enCL

V = e . enV PK =
\ cov(CL,V) Wy

Adding the covariates as observations:

ID TIME AMT DV WTI SEX RACE FREMTYPE

1 0 100 0 75 1 2 0 FREMTYPE:
1 0 75 75 1 2 1 0: PK

1 0 1 75 1 2 2 1. WT

1 1 0.86 75 1 2 0 2: SEX

1 2 0.69 75 1 2 0

cov(Npk, Neov)

F(1+¢&)  FREMTYPE =0
Y={Bwr + 13 + &0 FREMTYPE=1 () _
Osex + N4 + €0 FREMTYPE = 2 FREM

COV(T]PK' T]cov)

Correlations between covariates are a part of
the model instead of being ignored (=assumed
to be 0).

Missing covariates are not an issue since they
are treated as observations.

RRRRRRRRRRRRRRR Statistics  yy gy

Properties of the full random-effect modeling approach
with missing covariate data

Joakim Nyberg'® | E. Niclas Jonsson'® | Mats O. Karlsson'?® | Jonas Higgstrom?®

+ FREM gives precise and unbiased estimates even with
90% missing data

* Mean imputation shows bias already at 10% missing
rates.

« Complete case analysis was less precise than FREM
and could only handle <70% missing covariates




Simulation setup — model and design

ka

Depot —p  Central

lCL
v

Central Concentration




Monte Carlo scenarios

Simulation models

No covariates
IV correlation

No covariates
No IIV correlation

Allometric on V
IV correlation

Allometric on V
No IIV correlation

Allometric on CL
IV correlation

Allometric on CL
No IIV correlation

Allometric on both
IV correlation

Allometric on both
No IIV correlation

[IV correlation (CL,V)

No IV correlation

‘ Full covariance (IIV) matrix

Estimated allometric scaling

Estimation models

No covariates
IV correlation

FREM

Allometric on V
IV correlation

No covariates
No IIV correlation

Allometric on CL
IIV correlation

Allometric on V
No IV correlation

Allometric on both
IV correlation

Allometric on CL
No correlation

FREM (no KA)
IV correlation

Allometric on both
No IIV correlation

I

—

Model structures:
. No covariates

*  Allometric scaling on CL
*  Allometric scaling on V

10

Fixed allometric scaling * Allometric scalingon CL & V
Not shown in this presentation . FREM (CL, V, Ka)
. FREM (CL,V)

D Simulation models

Both first order conditional with interaction estimation method and Important sampling investigated



Simulation setup

Central Concentration

Dataset

Nsim=100
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Results — Typical parameters

Minor omission bias effect
on typical parameters

e Correct model and

FREM performs similarly

Model & Correct B8 FREM Misspecified

2l
)

Allometric on CL & V with correlation

Allometric on CL & V without correlation
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Results — Typical parameters

Minor omission bias effect
on typical parameters

» Correct model and
FREM performs similarly

. Tendency to underpredict
parameters (CL,V) when
excluding the covariate
on one or both
parameters

~

Model B2 Correct B FREM Misspecified

Allometric on CL & V with correlation

Parameter estimate
= o o
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Allometric on CL & V without correlation
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Results — Covariate coefficients

Omission hias effect on
covariate coefficients:

Model B8 Correct B8 FREM Misspecified

-

» Misspecified models biased
(>with correlation in data)

Allometric on CL & V with correlation

Allometric on CL & V without correlation

10 g
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Results — Covariate coefficients

Omission hias effect on
covariate coefficients:

» Misspecified models biased
(>with correlation in data)

|

« FREM less bias compared

to FFEM

ameter es

timate
o

Model B Correct FREM

E Misspecified

Allometric on CL & V with correlation

Allometric on CL & V without correlation
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Results — Covariate coefficients

Omission bias effect on
covariate coefficient:

Misspecified models biased
(>with correlation in data)

FREM less bias compared
to FFEM

\_

Inclusion bias: FREM
unaffected (no bias) by
allometric coefficient on Ka

Parameter estimate

Model B Correct B8 FREM & Misspecified

Estimation model

Allometric on CL & V with correlation - Allometric on CL & V without correlation —
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Allometric on V

Allometric on V with

full models
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Results — Covarlate coeff

Inclusion bias
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(slight advantage with

* Full models works quite well
FREM vs FFEM)
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Estimation model




Results — Interindividual variability

Omission bias: R éé‘ éé ’ % ‘ %
4 . : N\ o_m.JﬂL&m 1L é
* Variance estimates L L= RRE T | .

increases when covariate- o]

parameters relationships are
excluded (less explained
variability)

\_ J

T
e
-

T
1
-

i

==

-

}E}}

Model
B3 Correct
FBEM

Parameter estimate

) s v
< 5 )
L

T

VAm A"I.’)(r)

A
Z(’)



Results — Interindividual variability

. - - - lometric on with correlation
Omission bias: éé %é
. . 0.100 4 H__lrj_‘ Ea’
* Variance estimates TE —
increases when covariate- oo
parameters relationships are ij‘i % %
excluded (less explained = s
p % —|— Model
variability) g :

« FREM and FFEM (correct
model) both performs well
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Conclusions

« Assumptions we make have an impact on the bias/precision
of the covariate effects
« Use full 11V block or not
» Use Full model or not
* FREM or FFEM

« Parameter-covariate scope (reduction or not) FREM seems
to perform well in all scenarios, sometime even better than

the corresponding FFEM

« We get omission bias in covariate coefficients and variance
estimates (IIV) when not including true covariates (FFEM)

20



Future perspectives

* Investigate additional scenarios with multiple correlated
covariates on multiple parameters

» Report type 1 error - selection bias

» Conseguences for stepwise model building
approaches?

 Link this work to causality and consequences of
Inclusion/omission bias w.r.t casual effects
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Slope*sin(Aspect) . .
Slope*cos(Aspect) . .
sope@c@ - 000 -
TRASP (Topographic Radiation Index) .
TRI (Topographic Rouphness Index) . 6] ®| |0 o o
BIO1 = Annual Mean Temperature .. O .... O o
BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) .. > 900@® 0 o

BIO3 = Isothermality (BI02/B107) (* 100) ‘. Y ) o

BIO4 = Temperature Seasonality (standard deviation *100) .

O ©
BIOS = Max Temperature of Warmest Month .. ....

C()

BIO6 = Min Temperature of Coldest Month .. .... , o QO o o o
BIO7 = Temperature Annual Range (BIO5-BIO6) .. [ X X Kelfele) @000
BIO8 = Mean Temperature of Wettest Quarter .... o] >
BIO9 = Mean Temperature of Driest Quarter ... si| = o | @ | e

BIO10 = Mean Temperature of Warmest Quarter .. o
BIO11 = Mean Temperature of Coldest Quarter () o ¢
BIO12 = Annual Precipitation ..

BIO13 = Precipitation of Wettest Month .‘ (\ .‘..
BIO14 = Precipitation of Driest Month . . ...
BIO15 = Precipitation Seasonality (Coefficient of Variation) . Y X X°)
BIO16 = Precipitation of Wettest Quarter ....
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BIO18 = Precipitation of Warmest Quarter .‘
BIO19 = Precipitation of Coldest Quarter .

0.8

06

- 04

r02

-0.2

04

-0.6

-0.8

21



o° Pharmetheus



Conversion to FFEM with only one covariate from the
FREM model

cov(Npk, Ncov)

2
WcL WcLy  WCLWT
2
WcLv Wy Wy wT
2
WeL,wr  Wywr Wy

cov(Np Ncov) WcLseEx Wysex WWT,SEX

WcL SEX
Wy sex

WWT,SEX
WsEx

The corresponding FFEM models for CL and V are:

CL = eCL . e(BCL,WT(WT—W)+n’CL)
V = 9V . e(BV,WT(WT—W)+n(/)

where

__ WOcLwT BV —

BCL - ‘”\ZNT

And the n's come

2! 2
weL, = Wg, — WerwTBeL

Wy WT

wiyt
from the corresponding w's:

!

2 2
wy = wy — wywrBy

The covariates will always be additive to the
corresponding 7.

The IV must be adjusted to reflect the
iImpact of the covariate.

It is only the covariates we decide to include
in the FFEM model that affects the FFEM
coefficients.

With multiple covariates it is also necessary
to adjust the covariance term between the
parameters.
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