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• Interests:

– applied Bayesian inference

– spatial statistics

– epidemiology (both infectious and NCDs)

– deep generative models
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• Drug-induced liver injury (DILI) is a major cause of attrition in drug 

development and a common reason for withdrawing a drug from the market.

• Predicting clinical DILI is difficult due to its multi-mechanistic nature and 

chemical properties of the drug. 

• Pre-clinical animal studies fail in making correct predictions in about 45% of 

clinical trials*.

• Classical in silico models require sufficient amount of data to make reliable 

predictions, while real life liver toxicity data sets are small.

* Concordance of the toxicity of pharmaceuticals in humans and in animals, Olson et al., Regulatory Toxicology and Pharmacology (2000)
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• Neural networks (NNs) are popular due to their flexibility.

• NNs have been applied in the context of DILI prediction*. 

• However, they are not recommended for small data sets and do not 

provide a degree of uncertainty on their predictions.

*Deep learning for drug-induced liver injury, Xu et al. Journal of Chemical Information and Modelling  (2015)
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• Bayesian neural networks (BNNs) describe 

parameters of a NN model via distributions, 

rather than a single number. 

• Bayesian models 

- prevent overfitting by using prior distributions

- provide information about the degree of  

uncertainty of predictions
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Data

• We used the dataset provided in Aleo et 

al* containing 184 labelled compounds.

• A random train-test 80% - 20% split was 

created exactly matching proportions of 

each severity category.

*Moving beyond Binary Predictions of Human Drug-Induced Liver Injury (DILI) toward Contrasting   
Relative Risk Potential, Aleo et al. Chemical Research in Toxicology (2019)

1 – no DILI concern

2 – less DILI concern

3 – most DILI concern
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• Predictors: assays and physicochemical properties of compounds
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Models

• DILI severity was modelled via the ordered logistic regression with 

three classes. 

• Thresholds, separating the classes, were estimated from data:
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Models

Proportional odds logistic regression (POLR)

• Priors• Model structure*

*Predicting drug-induced liver injury with Bayesian Machine Learning. Williams D., Lazic S. et al. Chemical Research in      
Toxicology (2019)
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Models

Bayesian Neural Network (BNN)

• Priors• Model structure
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• WAIC – Watanabe-Akaike Information criterion for Bayesian model selection, 

applicable to models with non-normal  posteriors (the smaller, the better)

• OBS – Ordered Brier Score measures the distance from predicted probability to 

the true class, accounting for the ordered nature of the data; this measure is 

more suitable than balanced accuracy for ordered outcomes (the smaller, the 

better)

• BSS – Brier Skill Score measures how much better a model is than the   

baseline model predicting observed frequencies  (the larger, the better)

• BA – Balanced accuracy takes imbalances in the observed outcome into 

account (the larger, the better)
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Results

Model 
WAIC

Train / Test 
mean  OBS

Train / Test 
median  OBS

Train / Test 
mean BSS

Train / Test 
median BSS

Train / Test 
BA

POLR 272.0 0.14 / 0.16 0.10 / 0.12 0.27 / 0.19 0.38 / 0.35 0.64 / 0.62

BNN 253.1 0.12 / 0.14 0.08 / 0.10 0.36 / 0.29 0.45 / 0.37 0.71 / 0.67

Comparison of models according to several evaluation metrics
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• BNN displays sharper

separation between 

categories

POLR BNN



Predictions for one compound
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• Posterior distributions

• Predictions

POLR BNN
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• In our application the BNN  performs better than a traditional but 

less flexible POLR model with interactions and does not show 

strong signs of overfitting on a relatively small dataset.

• We provide the first application of BNNs to toxicology.

• The presented model lays a foundation for more complex models 

built on larger datasets but can already be adopted by safety 

pharmacologists for risk quantification.
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• Concentration-response (CR) experiments are used to rank 

drug candidates. 

• Traditional small molecules typically yield sigmoidal curves, 

characterized by a plateau at high drug concentrations.

• CR curves of a new drug modality show a loss of efficacy at 

higher doses, known as the ‘hook effect’.
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We are looking to fit a curve which is

• flat at low concentrations (no compound activity),

• able to capture curve characteristics at higher concentrations (the 

‘hook effect’).
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We account for two sources of uncertainty:

• curve uncertainty,

• replicate-to-replicate variation.
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• d : degradation at zero concentration,

• a: Dmax - maximal degradation,

• c: log10(DC50) - concentration of half-degradation,

• x : dose on the log10-scale,

• b: Hill’s slope (slope at the half-degradation point).
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Gaussian Process model allows to fit flexible curve shapes. It is defined as

Evaluated on a finite set of points it constitutes a multivariate normal with 

covariance matrix K . For example

Parameters η and ρ define the amplitude and lengthscale of the curve, 

correspondingly.
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Kernel design allows to specify a wider range of GP priors. Given two GPs

we can construct a new one

Then
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From raw data to compound ranks
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And stay in touch: 

elizaveta.p.semenova@gmail.com

mailto:Elizaveta.p.Semenova@gmail.com

