Bayesian neural networks and changepoint Gaussian Processes for drug safety and efficacy: two case studies

Elizaveta Semenova

Imperial College London, School of Public Health

Stan for Pharmacometrics, INSERM

4 July 2025

Context

- Imperial College London, Assistant Professor, 2024 now
- University of Oxford, Schmidt Sciences AI2050 Early Career Fellow, 2023 2024
- University of Oxford, Postdoc, 2022 2023
- Imperial College London, Postdoc, 2021 2022

AstraZeneca, Postdoc, 2019 – 2021

Swiss Tropical and Public Health Institute, PhD, 2014 – 2019

Context

- Interests:
 - applied Bayesian inference
 - spatial statistics
 - epidemiology (both infectious and NCDs)
 - deep generative models

Bayesian Neural Networks for toxicity prediction

Computational Toxicology 16 (2020) 100133

A Bayesian neural network for toxicity prediction

Elizaveta Semenova^a,*, Dominic P. Williams^b, Avid M. Afzal^a, Stanley E. Lazic^c

^a Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK

^b Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
^c Prioris.ai Inc, Ottawa, Canada

• Drug-induced liver injury (DILI) is a major cause of attrition in drug development and a common reason for withdrawing a drug from the market.

- Drug-induced liver injury (DILI) is a major cause of attrition in drug development and a common reason for withdrawing a drug from the market.
- Predicting clinical DILI is difficult due to its multi-mechanistic nature and chemical properties of the drug.

- Drug-induced liver injury (DILI) is a major cause of attrition in drug development and a common reason for withdrawing a drug from the market.
- Predicting clinical DILI is difficult due to its multi-mechanistic nature and chemical properties of the drug.
- Pre-clinical animal studies fail in making correct predictions in about 45% of clinical trials^{*}.

* Concordance of the toxicity of pharmaceuticals in humans and in animals, Olson et al., Regulatory Toxicology and Pharmacology (2000)

- Drug-induced liver injury (DILI) is a major cause of attrition in drug development and a common reason for withdrawing a drug from the market.
- Predicting clinical DILI is difficult due to its multi-mechanistic nature and chemical properties of the drug.
- Pre-clinical animal studies fail in making correct predictions in about 45% of clinical trials^{*}.
- Classical *in silico* models require sufficient amount of data to make reliable predictions, while real life liver toxicity data sets are small.

^{*} Concordance of the toxicity of pharmaceuticals in humans and in animals, Olson et al., Regulatory Toxicology and Pharmacology (2000)

Neural Networks for toxicity prediction

- Neural networks (NNs) are popular due to their flexibility.
- NNs have been applied in the context of DILI prediction*
- However, they are not recommended for small data sets and do not provide a degree of uncertainty on their predictions.

*Deep learning for drug-induced liver injury, Xu et al. Journal of Chemical Information and Modelling (2015)

Bayesian Neural Networks

• Bayesian neural networks (BNNs) describe parameters of a NN model via distributions, rather than a single number.

Bayesian Neural Networks

- Bayesian neural networks (BNNs) describe parameters of a NN model via distributions, rather than a single number.
- Bayesian models
 - prevent overfitting by using prior distributions
 - provide information about the degree of uncertainty of predictions

Data

1 – no DILI concern 2 – less DILI concern 3 – most DILI concern • We used the dataset provided in Aleo et al* containing 184 labelled compounds.

 A random train-test 80% - 20% split was created exactly matching proportions of each severity category.

*Moving beyond Binary Predictions of Human Drug-Induced Liver Injury (DILI) toward Contrasting Relative Risk Potential, Aleo et al. Chemical Research in Toxicology (2019)

Data

• Predictors: assays and physicochemical properties of compounds

Models

- DILI severity was modelled via the ordered logistic regression with three classes.
- Thresholds, separating the classes, were estimated from data:

Models

Proportional odds logistic regression (POLR)

Model structure^{*}

Priors

Predictors (X)

$$\eta = Xw$$

$$w \sim \text{Normal}(0, \sigma)$$

$$\sigma \sim \text{Normal}^+(0, 1)$$

Predicting drug-induced liver injury with Bayesian Machine Learning. Williams D., Lazic S. et al. Chemical Research in Toxicology (2019)

Models

Bayesian Neural Network (BNN)

Model structure

• Priors

 $h = \operatorname{ReLU}(Xw_{0,1})$ $\eta = hw_{1,2}$ $w = [w_{0,1}, w_{1,2}]$ $w \sim \operatorname{Normal}(0, \sigma)$ $\sigma \sim \operatorname{Normal}^+(0, 1)$

• WAIC – Watanabe-Akaike Information criterion for Bayesian model selection, applicable to models with non-normal posteriors (the smaller, the better)

- WAIC Watanabe-Akaike Information criterion for Bayesian model selection, applicable to models with non-normal posteriors (the smaller, the better)
- OBS Ordered Brier Score measures the distance from predicted probability to the true class, accounting for the ordered nature of the data; this measure is more suitable than balanced accuracy for ordered outcomes (the smaller, the better)

- WAIC Watanabe-Akaike Information criterion for Bayesian model selection, applicable to models with non-normal posteriors (the smaller, the better)
- OBS Ordered Brier Score measures the distance from predicted probability to the true class, accounting for the ordered nature of the data; this measure is more suitable than balanced accuracy for ordered outcomes (the smaller, the better)
- **BSS** *Brier Skill Score* measures how much better a model is than the baseline model predicting observed frequencies (the larger, the better)

- WAIC Watanabe-Akaike Information criterion for Bayesian model selection, applicable to models with non-normal posteriors (the smaller, the better)
- OBS Ordered Brier Score measures the distance from predicted probability to the true class, accounting for the ordered nature of the data; this measure is more suitable than balanced accuracy for ordered outcomes (the smaller, the better)
- **BSS** *Brier Skill Score* measures how much better a model is than the baseline model predicting observed frequencies (the larger, the better)
- **BA** *Balanced accuracy* takes imbalances in the observed outcome into account (the larger, the better)

Comparison of models according to several evaluation metrics

Model	WAIC	Train / Test mean OBS	Train / Test median OBS	Train / Test mean BSS	Train / Test median BSS	Train / Test BA
POLR	272.0	0.14 / 0.16	0.10/0.12	0.27 / 0.19	0.38 / 0.35	0.64 / 0.62
BNN	253.1	0.12 / 0.14	0.08 / 0.10	0.36 / 0.29	0.45 / 0.37	0.71/0.67

Predictions for test examples

 BNN displays sharper separation between categories

POLR

BNN

Predictions for one compound

Posterior distributions

Predictions

Folic Acid

BNN

Conclusions

 In our application the BNN performs better than a traditional but less flexible POLR model with interactions and does not show strong signs of overfitting on a relatively small dataset.

• We provide the first application of BNNs to toxicology.

 The presented model lays a foundation for more complex models built on larger datasets but can already be adopted by safety pharmacologists for risk quantification.

Changepoint Gaussian Processes for drug efficacy

🤝 Original Research

Flexible Fitting of PROTAC Concentration-Response Curves with Changepoint Gaussian Processes

SLAS Discovery 2021, Vol. 26(9) 1212–1224 © Society for Laboratory Automation and Screening 2021 DOI: 10.1177/24725552211028142 journals.sagepub.com/home/jbx SAGE

Elizaveta Semenova¹, Maria Luisa Guerriero¹, Bairu Zhang¹, Andreas Hock², Philip Hopcroft², Ganesh Kadamur², Avid M. Afzal¹, and Stanley E. Lazic³

Introduction

- **Concentration-response** (CR) experiments are used to rank drug candidates.
- Traditional small molecules typically yield **sigmoidal curves**, characterized by a **plateau** at high drug concentrations.
- CR curves of a **new drug modality** show a loss of efficacy at higher doses, known as the **'hook effect'**.

Understanding data

Domain understanding

We are looking to fit a curve which is

- flat at low concentrations (no compound activity),
- able to capture curve characteristics at higher concentrations (the 'hook effect').

Sources of uncertainty

We account for two sources of uncertainty:

- curve uncertainty,
- replicate-to-replicate variation.

$$y \sim N(\underline{y}, \sigma^2 I),$$
 (1)

$$y_{\rm rep}^{\rm treatment} \sim t_{\nu}(y, \sigma_{\rm rep}),$$
 (2)

$$y_{\rm rep}^{\rm control} \sim t_{\nu}(\mu, \sqrt{\sigma^2 + \sigma_{\rm rep}})$$
 (3)

Traditional Hill's (4PL) model

$$\underline{y}(x) = d + \frac{a-d}{1 + \exp(-b(x-c))}$$

- d: degradation at zero concentration,
- *a*: D_{max} maximal degradation,
- c: log₁₀(DC₅₀) concentration of half-degradation,
- *x*: dose on the log₁₀-scale,
- b: Hill's slope (slope at the half-degradation point).

Model fit

Gaussian Process (GP) model

Gaussian Process model allows to fit flexible curve shapes. It is defined as

$$f \sim \operatorname{GP}(0, k).$$

Evaluated on a finite set of points it constitutes a multivariate normal with covariance matrix K. For example

$$\mathcal{K}[i,j] = \eta^2 \exp\left(-rac{(x_i - x_j)^2}{
ho^2}
ight)$$

Parameters η and ρ define the **amplitude** and **lengthscale** of the curve, correspondingly.

Model fit

Changepoint Gaussian Process

Kernel design allows to specify a wider range of GP priors. Given two GPs

$$f_1(x) \sim GP(0, k_1),$$

 $f_2(x) \sim GP(0, k_2),$

we can construct a new one

$$egin{aligned} &f_{ heta}(x)=(1-w_{ heta}(x))f_1(x)+w_{ heta}(x)f_2(x),\ &w_{ heta}(x)=\sigma(g(x- heta)),g>1. \end{aligned}$$

Then

$$f_{\theta}(x) \sim \mathsf{GP}(0, k_{ heta}),$$

 $k_{\theta}(x, x') = (1 - w_{ heta}(x))k_1(x, x')(1 - w_{ heta}(x')) + w_{ heta}(x)k_2(x, x')w_{ heta}(x').$

Changepoint GP priors

g=100

log₁₀-concentration [M]

Changepoint GP priors

response

log₁₀-concentration [M]

Changepoint GP priors

response

log₁₀-concentration [M]

Model fit

log₁₀-concentration [M]

The process of compound ranking

From raw data to compound ranks

And stay in touch:

elizaveta.p.semenova@gmail.com