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DILI

Drug-induced liver injury (DILI) is a major cause of attrition in drug
development and a common reason for withdrawing a drug from the market.

Predicting clinical DILI is difficult due to its multi-mechanistic nature and
chemical properties of the drug.

Pre-clinical animal studies fail in making correct predictions in about 45% of
clinical trials”.

Classical in silico models require sufficient amount of data to make reliable
predictions, while real life liver toxicity data sets are small.

* Concordance of the toxicity of pharmaceuticals in humans and in animals, Olson et al., Regulatory Toxicology and Pharmacology (2000)



Neural Networks for toxicity prediction

* Neural networks (NNs) are popular due to their flexibility.

« NNs have been applied in the context of DILI prediction™

« However, they are not recommended for small data sets and do not
provide a degree of uncertainty on their predictions.

*Deep learning for drug-induced liver injury, Xu et al. Journal of Chemical Information and Modelling (2015)



Bayesian Neural Networks

output layer

« Bayesian neural networks (BNNs) describe
N\ AN parameters of a NN model via distributions,

hidden rather than a single number.
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Bayesian Neural Networks

output layer

« Bayesian neural networks (BNNs) describe
N\ AN parameters of a NN model via distributions,

hidden rather than a single number.
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Data
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Number of compounds

1 2 3

DILI severity
1 —no DILI concern

2 —less DILI concern
3 —most DILI concern
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* We used the dataset provided in Aleo et
al” containing 184 labelled compounds.

« Arandom train-test 80% - 20% split was
created exactly matching proportions of
each severity category.

"Moving beyond Binary Predictions of Human Drug-Induced Liver Injury (DILI) toward Contrasting
Relative Risk Potential, Aleo et al. Chemical Research in Toxicology (2019)



Data

* Predictors: assays and physicochemical properties of compounds
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Models

14

* DILI severity was modelled via the ordered logistic regression with

three classes.

» Thresholds, separating the classes, were estimated from data:

thresholds ¢

underlying continuous
predictor 7}

High

Med

Low

observed DILI
severity

y ~ OrderedLogistic(n, c)



Models

Proportional odds logistic regression (POLR)
* Model structure” * Priors

Predictors (X)

n=Xw
DILI severity (y) w ~ Normal(0, o)

o ~ Normal™ (0, 1)

w

Predicting drug-induced liver injury with Bayesian Machine Learning. Williams D., Lazic S. et al. Chemical Research in
Toxicology (2019)



Models

Bayesian Neural Network (BNN)

* Model structure * Priors
Hidden layer (h)
Predictors (X) h - ReLU(XwO’l)
n = hwl,z
DILI severity (y) w = [”UU(),l, wl,Q}

w ~ Normal(0, o)
o ~ Normal™ (0, 1)

16



Evaluation metrics

 WAIC — Watanabe-Akaike Information criterion for Bayesian model selection,
applicable to models with non-normal posteriors (the smaller, the better)
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Evaluation metrics

 WAIC — Watanabe-Akaike Information criterion for Bayesian model selection,
applicable to models with non-normal posteriors (the smaller, the better)

« OBS - Ordered Brier Score measures the distance from predicted probability to
the true class, accounting for the ordered nature of the data; this measure is
more suitable than balanced accuracy for ordered outcomes (the smaller, the
better)

- BSS - Brier Skill Score measures how much better a model is than the
baseline model predicting observed frequencies (the larger, the better)

« BA — Balanced accuracy takes imbalances in the observed outcome into
account (the larger, the better)
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Results

Comparison of models according to several evaluation metrics

Train / Test
mean OBS

Train / Test

Train / Test
mean BSS

Train / Test | Train / Test

median OBS median BSS BA

POLR 272.0

BNN 2531
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0.14 /0.16 0.10/0.12 0.27/0.19 0.38/0.35 0.64/0.62

0.12/0.14 0.08/0.10 0.36/0.29 0.45/037 0.71/0.67



Predictions for test examples
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Predictions for one compound

Folic Acid

» Posterior distributions '
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Conclusions

* In our application the BNN performs better than a traditional but
less flexible POLR model with interactions and does not show
strong signs of overfitting on a relatively small dataset.

» We provide the first application of BNNs to toxicology.

» The presented model lays a foundation for more complex models
built on larger datasets but can already be adopted by safety
pharmacologists for risk quantification.

24



Changepoint Gaussian Processes for drug efficacy
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Introduction

« Concentration-response (CR) experiments are used to rank
drug candidates.

 Traditional small molecules typically yield sigmoidal curves,
characterized by a plateau at high drug concentrations.

* CR curves of a new drug modality show a loss of efficacy at
higher doses, known as the ‘hook effect’.

26



Understanding data
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Domain understanding

We are looking to fit a curve which is
- flat at low concentrations (no compound activity),

* able to capture curve characteristics at higher concentrations (the
‘hook effect’).

28



Sources of uncertainty

We account for two sources of uncertainty:

e curve uncertainty,
 replicate-to-replicate variation.

y ~ N(y,o°I), (1)

treatment

yrep ~ty (yv O'rep), (2)

yeomtrol sty (1, 1/ 02 + Orep) (3)

29

control
yreplicate

treat
yreplicate



Traditional Hill’s (4PL) model

a—d

y(x)=d+ FRpe )

d: degradation at zero concentration,

a. Dmax - maximal degradation,

c: log4o(DCs0) - concentration of half-degradation,
x: dose on the logo-scale,

b: Hill’s slope (slope at the half-degradation point).

30



Model fit
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Gaussian Process (GP) model

Gaussian Process model allows to fit flexible curve shapes. It is defined as

f ~ GP(0, k).

Evaluated on a finite set of points it constitutes a multivariate normal with
covariance matrix K. For example
_(xi— Xj)2)

Kli,j] = n° exp ( 72

Parameters n and p define the amplitude and lengthscale of the curve,
correspondingly.

32



Model fit
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Changepoint Gaussian Process

Kernel design allows to specify a wider range of GP priors. Given two GPs

fl(X) ~/ GP(O,kl),
fz(X) ~ GP(07k2)7

we can construct a new one

Then

34

fo(x) = (1 = wy(x))f1(x) + wp(x)f2(x),
wo(x) = o(g(x —0)),g > 1.

fo(x) ~ GP(0, kg),
ko(x, x ) = (1 — wa(x)) ks (x, X')(1 — wy(x")) + wo(x) ka(x, x")wp(x').



Changepoint GP priors
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Changepoint GP priors

response
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Changepoint GP priors

g=10

response
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Model fit

? i : e observations-rep1
o - S | e observations-rep2
| 1 %  controls
. | : —— GP mean
é CO\II | : | — - |Og10(POD)
g I | Dmax
'_‘5 | | log10(DCsp)
B ®- :
) 1 1
£ ! !
s 8 - I !
o ' 1 1
s | I
é’? o _9"‘_3"____ —— B b _ S
& 9 A 1
= 1 1
| 1
S | 1 1
- 1 1
: log1o(PoD) : log10(DCso)
T 1 T T T T
-10 -9 -8 -7 -6 -5

logsg-concentration [M]

38




The process of compound ranking
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From raw data to compound ranks

number of MCMC iterations number of MCMC iterations
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Thank you
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And stay in touch:

elizaveta.p.semenova@gmail.com
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