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Oncology phase I dose-escalation

• Phase I trials in oncology adaptively escalate dose

1. Cohorts of 3-6 patients at a time enrolled at a safe dose

2. Monitored for primary safety follow-up of usually 1 cycle (i.e. 4 weeks)

3. At dose escalation meeting (DEM) decision on next safe dose

– Which doses are safe for the next cohort?

– Which of these safe doses should one test next?

• With early stages data are very sparse and incomplete

i.e., often the last cohort has safety data only, but no drug concentrations yet

• Can we make best use of the trial data to guide a trial at a DEM?

• Historical safety data from administered drug components

• Longitudinal models for key safety markers

Disease progression models sometimes available
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Running a dose-escalation using
the BLRM with EWOC

• We start with a small sample and perform 
adaptive Escalation With Overdose 
Control (EWOC) step-by-step to warrant 
patient safety

• EWOC for dose fulfilled 

⇔ 𝑃 𝜋 𝑑 ∈ over dose < 0.25

• 𝜋 𝑑 probability of a DLT during a cycle

• Overdose is if 𝜋 𝑑 > 1/3

• Avoids too toxic (or too uncertain) doses!

• Equivalent to require that the 75% quantile

of 𝑃 𝜋 𝑑  is < 1/3
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Integrated popPD approach for
Phase 1 dose-escalation Oncology studies

Proposal: Integrated popPD modeling

• Focus on modelling PD - including data of patients with missing PK data

• Longitudinal population models leveraging prior knowledge (e.g. model 
structure and/or parameters from literature or pre-clinical)

• Time-varying exposure based on dosing history and/or simplified PK

• Assess benefit & risk for future patients using simulations

When to use: Early stages of dose escalation

• Quick turnaround tailored to the program needs

• To be used when popPKPD is not yet established

• Model assumptions for time-varying exposure must be reasonably met 
given analysis goals (in agreement with known drug pharmacology)

Dose-Response

e.g. BLRM-like analysis

NCA-Response

e.g. exploratory visualizations

Integrated popPD

e.g. simplified joint (P)KPD

popPK, Joint popPKPD
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Concentration based exposure comes 
with significant uncertainty

▪ Estimation

uncertainty

▪ (Residual error)
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Lack of PK data leads to substantial 
uncertainty due to heterogeneity

▪ Available PK data leads to relatively 
precise exposure metric

▪ Lack of PK data leads to substantial 
uncertainty due to
between-patient heterogeneity
▪ Regression of PD data of patients in 

absence of PK data

▪ Used for simulation of future patients 
outcomes as needed for dosing 
recommendations

▪ => Integrated modeling approach 
(avoids shrinkage issues)
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Time-varying exposure as
latent concentration or
simplified PK model

Goal: To describe exposure longitudinally over time with focus on steady state kinetics 
including reaching and leaving steady-state (characterize dosing regimens/drug 
holidays/non-compliance)

Data: Actual dosing history and readily available data such as NCA estimates for clearance, 
volume, and observed Cmin & Cmax

Out of scope: Highly accurate modeling of drug pharmacology. E.g. short-term absorption 
process often complex and not needed for modeling longer term PD. Desirable to have a 
not too wrong Cmax, but given less priority for the sake of simplicity.

PK model: First order absorption one-compartment linear elimination model based on 
dosing history only or if with PK data then a fully generative such that the model extends 
with uncertainty to new unseen patients
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Integrated popPD approach

Goal: Analyze with the time-varying exposure model (latent concentration
or simplified PK model) as a building block for different endpoints

• Account for parameter uncertainty in case of simplifed PK

• Inclusion of PD data of patients without PK data (most recent cohort!)

• Use of prior knowledge on parameter values and plausible model structure, e.g. platelet or neutrophil 
counts

Approach:

• Semi-mechanistic PD response model using fit for purpose exposure metric
derived from exposure model

• Derived exposure metric calculated with uncertainty as part of the
integrated popPD model fit

Example endpoints

• Events

Hazard proportional to exposure

• Continuous Turn-Over Model
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Methodology summary

Time-varying exposure using a simplified PK model

• Stable model fit

• Considerable uncertainty in estimates with small sample sizes expected

• Informed from readily available data

Benefits of simplified PK model

• Without PK data the simplified PK model can be reduced to a latent concentration

• Includes extensive visualizations of latent model structure

For integrated popPD model we use an approximation of the simplified PK model posterior

• Omits PK data in the context of a popPD fit

• Accounting for uncertainty in PK parameter estimates (including individual random effects)

• Generative – simplified PK model extends to unseen patients by population model
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Case example for continuous endpoint 
platelet counts

• Data from trial NCT02375958 studying PCA062 given as infusion (in mg/kg) every 2 
weeks (q2w) to patients with pCAD+ tumors

• DEM data was emulated for each DEM with PK data of the last two patients enrolled in 
each cohort set to missing

• Platelet counts were closely monitored as part of regular safety assessment

• A simplified structural model of platelet counts and priors are aligned
with models published prior to the trial in a related class of drugs

• Models evaluated & data used for exposure model

• K-PD: Actual dosing history, average PK parameters CL & V for all patients

• NK-PD: adds non-compartmental analysis (NCA) estimates of CL & V per patient

• PK-PD: adds Cmin measurements
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Model evaluation
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Model performance assessment:
Continuous ranked probability score

▪ Scoring rules assess a predictive distribution vs an 
observed value

▪ The continuous ranked probability score
(CRPS, Gneiting et al 2007) is given by

𝐶𝑅𝑃𝑆 𝐹, 𝑦∗ = − න
−∞

∞

𝐹 𝑦 − 1{𝑦>𝑦∗}
2

𝑑𝑦

▪ 𝐹(𝑦) cdf of the predictive distribution of each model

▪ 𝑦∗ longitudinal data of each patient 

▪ No need for predictive density makes an evaluation 
simple with MCMC samples of predictive

▪ Higher CRPS → better scores by predictions with

▪ Low bias

▪ High precision

1{𝑦>𝑦∗}

𝐹(𝑦)

𝐹 𝑦 − 1{𝑦>𝑦∗}
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Model performance comparison

- The CRPS has a higher score for lower 
bias and for lower variance predictions.

- The training row shows the scores for 
each model per DEM cut-off.
-> Which model we would take at a 
given DEM

- The future row shows the scores on 
the complementary data set of the 
respective future.
-> How good would have been the 
decision at that time point?

- The NK-PD model appears best 
overall.
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Summary

• Dose escalation meeting decisions:

Which doses are safe for the next cohort? & Which of these should one test?

• Cross-sectional safety models currently common

• Population PK “popPK” models / non-compartmental analysis (NCA) often used as a 

surrogate for safety & efficacy

• Proposal to routinely build population PD ”popPD” models

• Must account for incomplete data

Latest cohort safety PD data available while PK data is not ready in time

• Must be simple enough for stable estimation in sparse data settings

• Should propagate uncertainty in longitudinal exposure metric

• Practical approach is a 2-step “with uncertainty” fitting approach

• Case study benchmarks K-PD, “NK-PD” vs PK-PD models

“NK-PD” accounts for patient specific expose through NCA estimate of CL & V, which 

appears to be sufficient for good modeling of platelet counts
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Model priors

Parameter Units Definition Distribution Prior 95% CrI Note

Cl L/hr Clearance of central compartment Log-normal 0.0006, 0.16

ωCL None Patient random effect standard deviation log(Cl) Log-normal 0.04, 1.05 0 for K-PD

V L Volume of central compartment Log-normal 0.64, 156.71 5L for K-PD

ωV None Patient random effect standard deviation log(V) Log-normal 0.12, 0.32 0 for K-PD

ka 1/hr Absorption rate Constant log(2)/(1/6)

Fr None overall scaling factor (applied to dose) Log-normal 0.62, 1.62 1 for K-PD & NK-PD

ωFr None Patient random effect standard deviation log(Fr) Log-normal 0.04, 1.05 0 for K-PD & NK-PD

𝜅 None Transfer rate to effect compartment relative to Cl/V Log-normal 0.14, 7.10

𝜔𝜅 None Patient random effect standard deviation log(𝜅) Half-Normal 0.02, 1.12

𝜔Rs None Measurement error of observed log(Rs) Half-normal 0.003, 0.22

𝑘out
−1 hr first order elimination time-scale of response Log-normal 15.1, 79.3

Imax None Maximal inhibition proportion Uniform 0.025, 0.975

𝜔Imax None Patient random effect standard deviation logit(Imax) Half-Normal 0.02, 1.12

𝐸50 mg/L Half effect concentration in effect compartment Log-normal 0.13, 31.3
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