Novel integrated population PD modeling framework to inform decision making during Oncology phase I dose-scalation

Sebastian Weber Stan4PMX, Paris July 4th, 2025

UNOVARTIS Reimagining Medicine

Acknowlegments

- Juan Gonzalez-Maffe
- Guilaume Baneyx
- Lukas Widmer
- Lada Markovtsova

Oncology phase I dose-escalation

- Phase I trials in oncology *adaptively* escalate dose
 - 1. Cohorts of 3-6 patients at a time enrolled at a safe dose
 - 2. Monitored for primary safety follow-up of usually 1 cycle (i.e. 4 weeks)
 - 3. At dose escalation meeting (DEM) decision on next safe dose
 - Which doses are safe for the next cohort?
 - Which of these safe doses should one test next?
- With early stages data are very sparse and incomplete
 i.e., often the last cohort has safety data only, but no drug concentrations yet
- Can we make best use of the trial data to *guide a trial at a DEM*?
 - Historical safety data from administered drug components
 - Longitudinal models for key safety markers
 Disease progression models sometimes available

Integrated popPD approach for Phase 1 dose-escalation Oncology studies

Proposal: Integrated popPD modeling

- Focus on modelling PD including data of patients with missing PK data
- Longitudinal population models leveraging prior knowledge (e.g. model structure and/or parameters from literature or pre-clinical)
- **Time-varying exposure** based on dosing history and/or simplified PK
- Assess benefit & risk for future patients using simulations

When to use: Early stages of dose escalation

- Quick turnaround tailored to the program needs
- To be used when popPKPD is not yet established
- Model assumptions for time-varying exposure must be reasonably met given analysis goals (in agreement with known drug pharmacology)

Concentration based exposure comes with significant uncertainty

Posterior predictive exposure of an example patient Simplified PK based on Cmin (black dots), NCA of CI and V

- Estimation uncertainty
- (Residual error)

Lack of PK data leads to substantial uncertainty due to heterogeneity

- Available PK data leads to relatively precise exposure metric
- Lack of PK data leads to substantial uncertainty due to between-patient heterogeneity
 - Regression of PD data of patients in absence of PK data
 - Used for simulation of future patients outcomes as needed for dosing recommendations
- => Integrated modeling approach (avoids shrinkage issues)

Posterior mean exposure as regressor

Time-varying exposure as latent concentration or simplified PK model

Goal: To describe exposure longitudinally over time with focus on steady state kinetics including reaching and leaving steady-state (characterize dosing regimens/drug holidays/non-compliance)

Data: Actual dosing history and readily available data such as NCA estimates for clearance, volume, and observed $C_{min} \& C_{max}$

Out of scope: Highly accurate modeling of drug pharmacology. E.g. short-term absorption process often complex and not needed for modeling longer term PD. Desirable to have a not too wrong C_{max} , but given less priority for the sake of simplicity.

PK model: First order absorption one-compartment linear elimination model based on dosing history only or if with PK data then a fully generative such that the model extends with uncertainty to new unseen patients

Integrated popPD approach

Goal: Analyze with the time-varying exposure model (latent concentration • or simplified PK model) as a building block for different endpoints

- Account for parameter uncertainty in case of simplifed PK
- Inclusion of PD data of patients without PK data (most recent cohort!)
- Use of prior knowledge on parameter values and plausible model structure, e.g. platelet or neutrophil counts

Absorption

С

Central (V)

Approach:

 Semi-mechanistic PD response model using fit for purpose exposure metric derived from exposure model

Dose-

Derived exposure metric calculated with uncertainty as part of the integrated popPD model fit

Example endpoints

- Events
- Hazard proportional to exposure

Response

Continuous Turn-Over Model

Methodology summary

Time-varying exposure using a simplified PK model

- Stable model fit
- Considerable uncertainty in estimates with small sample sizes expected
- Informed from readily available data

Benefits of simplified PK model

- Without PK data the simplified PK model can be reduced to a latent concentration
- Includes extensive visualizations of latent model structure

For integrated popPD model we use an approximation of the simplified PK model posterior

- Omits PK data in the context of a popPD fit
- Accounting for uncertainty in PK parameter estimates (including individual random effects)
- Generative simplified PK model extends to unseen patients by population model

Case example for continuous endpoint platelet counts

- Data from trial NCT02375958 studying PCA062 given as infusion (in mg/kg) every 2 weeks (q2w) to patients with pCAD+ tumors
- DEM data was **emulated** for each DEM with PK data of the last two patients enrolled in each cohort set to missing
- Platelet counts were closely monitored as part of regular safety assessment
- A simplified structural model of platelet counts and priors are aligned with models published prior to the trial in a related class of drugs
- Models evaluated & data used for exposure model
 - K-PD: Actual dosing history, average PK parameters CL & V for all patients
 - NK-PD: adds non-compartmental analysis (NCA) estimates of CL & V per patient
 - PK-PD: adds Cmin measurements

Model evaluation

NPDE vs time

Posterior predictive and observed data

UNOVARTIS | Reimagining Medicine

Model performance assessment: Continuous ranked probability score

- Scoring rules assess a predictive distribution vs an observed value
- The continuous ranked probability score (CRPS, Gneiting et al 2007) is given by $CRPS(F, y^*) = -\int_{-\infty}^{\infty} (F(y) - 1_{\{y > y^*\}})^2 dy$
 - *F*(*y*) cdf of the predictive distribution of each model
 - y* longitudinal data of each patient
 - No need for predictive density makes an evaluation simple with MCMC samples of predictive
- Higher CRPS \rightarrow better scores by predictions with
 - Low bias
 - High precision

Model performance comparison

- The CRPS has a higher score for lower bias and for lower variance predictions.
- The training row shows the scores for each model per DEM cut-off.
 Which model we would take at a given DEM
- The future row shows the scores on the complementary data set of the respective future.
 How good would have been the decision at that time point?
- The NK-PD model appears best overall.

Model performance

Higher score is better. Patient sample size shown for respective PK - PD data set.

Summary

- Dose escalation meeting decisions:
 - Which doses are safe for the next cohort? & Which of these should one test?
 - Cross-sectional safety models currently common
 - Population PK "popPK" models / non-compartmental analysis (NCA) often used as a surrogate for safety & efficacy
- Proposal to routinely build population PD "popPD" models
 - Must account for incomplete data Latest cohort safety PD data available while PK data is not ready in time
 - Must be simple enough for stable estimation in sparse data settings
 - Should propagate uncertainty in longitudinal exposure metric
 - Practical approach is a 2-step "with uncertainty" fitting approach
- Case study benchmarks K-PD, "NK-PD" vs PK-PD models "NK-PD" accounts for patient specific expose through NCA estimate of CL & V, which appears to be sufficient for good modeling of platelet counts

References

[1] Duca M, et al. A First-in-Human, Phase I, Multicenter, Open-Label, Dose-Escalation Study of PCA062: An Antibody-Drug Conjugate Targeting P-Cadherin, in Patients With Solid Tumors. Mol Cancer Ther. 2022 Apr 1;21(4):625-634. doi: 10.1158/1535-7163.MCT-21-0652.

[2] J Kim, et al. Combining BLRM and safety PKPD models to improve decision making in a phase I dose escalation study: case study of PCA062, an antibody drug conjugate targeting P-Cadherin. PAGE 28 (2019) Abstr 9108 [www.page-meeting.org/?abstract=9108]

[3] Bürkner P. C. (2017). brms: An R Package for Bayesian Multilevel Models using Stan. Journal of Statistical Software. 80(1), 1-28. doi.org/10.18637/jss.v080.i01.

[4] Stan Development Team. 2023. Stan Modeling Language Users Guide and Reference Manual, 2.32.2. https://mcstan.org

[5] B Bender, et al. An integrated pharmacokinetic-pharmacodynamic modeling analysis of T-DM1–induced thrombocytopenia and hepatotoxicity in patients with HER2-positive metastatic breast cancer. PAGE 25 (2016) Abstr 5928 [www.page-meeting.org/?abstract=5928]

[6] Gneiting T & Raftery AE. Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association (2007) 102(477), 359–378. doi: 10.1198/016214506000001437

Sebastian Weber

sebastian.weber@novartis.com

Thank you

UNOVARTIS Reimagining Medicine

Model priors

Parameter	Units	Definition	Distribution	Prior 95% CrI	Note
Cl	L/hr	Clearance of central compartment	Log-normal	0.0006, 0.16	
ω_{CL}	None	Patient random effect standard deviation log(CI)	Log-normal	0.04, 1.05	0 for K-PD
V	L	Volume of central compartment	Log-normal	0.64, 156.71	5L for K-PD
ω_{V}	None	Patient random effect standard deviation log(V)	Log-normal	0.12, 0.32	0 for K-PD
k _a	1/hr	Absorption rate	Constant	log(2)/(1/6)	
F _r	None	overall scaling factor (applied to dose)	Log-normal	0.62, 1.62	1 for K-PD & NK-PD
ω_{F_r}	None	Patient random effect standard deviation $log(F_r)$	Log-normal	0.04, 1.05	0 for K-PD & NK-PD
κ	None	Transfer rate to effect compartment relative to CI/V	Log-normal	0.14, 7.10	
ω_{κ}	None	Patient random effect standard deviation $log(\kappa)$	Half-Normal	0.02, 1.12	
^ω Rs	None	Measurement error of observed log(Rs)	Half-normal	0.003, 0.22	
k_{out}^{-1}	hr	first order elimination time-scale of response	Log-normal	15.1, 79.3	
Imax	None	Maximal inhibition proportion	Uniform	0.025, 0.975	
^ω lmax	None	Patient random effect standard deviation logit(Imax)	Half-Normal	0.02, 1.12	
E_{50}	mg/L	Half effect concentration in effect compartment	Log-normal	0.13, 31.3	