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INTRODUCTION AND MOTIVATION



Introduction

&

Motivations - Vaccinometrics

Starting point : Vaccine development for treatment and control of infectious diseases

J How it works ?

1 How long ?

Gene T [\
expression

-1 How to predict the response
in each individual ?

Sparse longitudinal noisy measures

E ~15,000 :

- What is the optimal
vaccination strategy ?
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Mechanistic models — Population approach

1 Structural model (ODE-based)
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Mechanistic models — Population approach

1 Structural model (ODE-based)
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Mechanistic models — Population approach

&

1 Structural model (ODE-based)

dXy g
E=fk(X1,...,XK,9,t), Xk e X EE
Xk(t — O) — Xk,O' k = {1, ,K}

(% ]
= 1 L

=
N
=

(3]

& -

[=]

v

0 400
Time (in days)

1 Statistical model (linear mixed effect model)

g(6;(®) = g(6y) + dZ;(t) +
u ~N(@©,Q), ie{l,.. N}

logqs(Ab

1 Observation model (Error model)

400
Time (in days)

Yij =Y(ti) =h (X(tij:g)) + g(X(tij,0),2)ei;

e;j ~ N(0,1)

logo(Abig)

00
Time (in days)

10



Introduction

Mechanistic models — Population approach

&

1 Structural model (ODE-based)

dXy g
E=fk(X1,...,XK,9,t), Xk e X EE
Xk(t — O) — Xk,O' k = {1, ,K}

0 400
Time (in days)

1 Statistical model (linear mixed effect model)

g(6;(®) = g(6y) + dZ;(t) +
u ~N(@©,Q), ie{l,.. N}

logqs(Ab

1 Observation model (Error model)

400
Time (in days)

Yij =Y(ti) =h (X(tij:g)) + g(X(tij,0),2)ei;

e;j ~ N(0,1)

logo(Abig)

00
Time (in days)

11



Introduction

Mechanistic models — Population approach

1 Structural model (ODE-based)

dx,

dt — fk(Xl,...,XK,H, t), Xk e X
Xk(t — O) — Xk,O' k = {1, ,K}

1 Statistical model (linear mixed effect model)

g(6;(®) = g(6y) + dZ;(t) +
u ~N(@©,Q), ie{l,.. N}

1 Observation model (Error model)
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&

Rationale & Objective

High frequency transcriptomics (RNA-seq) from self collected finger-prick blood

> R - Study: COVERAGE-Immuno
| | 0O 1 3 5 7 9 12 14 Days

Good concordance between
the whole-blood Tempus and
Finger prick-test

0.20-

RMSE = 0.031
S 0.15{ cor=0.31, p<2e-16 Reasonable concordance
E 0.10- between cell abundance by
& 0.05- ICS and from transcriptomic
0.00- data after deconvolution

0.00 0.05 0.10 0.15 0.20
Phenotype

1
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Rationale & Objective

High frequency transcriptomics (RNA-seq) from self collected finger-prick blood
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the whole-blood Tempus and

Finger prick-test Baseline transcriptomics data as

covariates in the mechanistic model.

R package Lasso-SAMBA
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Using transcriptomic data as
explanatory covariates

(lasso-SAMBA Package)



Lasso-SAMBA

&

Model Building strategy

Use baseline Gene expression as explanatory covariates

g(6;(0) = g(6y) + (/)X'ix(t) + u;
HIGH-DIMENSION

Sex i il Covariate models

-0>
Age

Short-lived
ASCs (S)

Y 4

Continent

Long-lived
ASCs (L)

— N
(AT ﬂﬁﬂﬂm \@m




Lasso-SAMBA

&

* SCM, Stepwise Covariate Modeling (Svensson and Jonsson, 2022) ;
* COSSAC, COnditional Sampling use for Stepwise Approach based on Correlation tests (Ayral and al. 2021) ;
« SAMBA (Prague and Lavielle, 2022).

, Stochastic Approximation for Model Building Algorithm, is an iterative algorithm, learning from a
previous "worse" model in order to move towards a relevant model (Prague and Lavielle, 2022).

 Estimate 8%,

. . ith @) (1" ;
/ which includes wi}{;;} and B%); With 6", (lpl )EEH '
* Simulate (1/,-[?*"'})_ , Conduct covariate selection : By LASSO ApproaCh
IsN
o (k) k k k
M from pa¢, (-1 Y,0%®) by McMC g (wi( J) —g ( ;;D;) +pWx, +n®
k )
Statistical odel

MO/ M* M1 = My, /Mk+1

Tibshirani et al. 1996; Meinshausen et al. 2010; Bodiner et al. 2023

18



Lasso-SAMBA

&

Covariates effetcs : ek . : Eos
*AGE ~ N (35,4%) on @, g Wl | ' i
.Gl ~ N(O’l) on @ ikl i . : ......__.-"'
‘G, ~ N(0,1) on &y P LR i iy el B

-
o

P =200 gaussian correlated covariates (P=1000 similar results) - g P !:.s:’f
R =100 replicates, AR
N = 100 individuals (N=20 similar results). K,

P e’ -

R .-I.l

| Antibodies secreting cells (ASCs) _.-".. b
it : .____.-""...
Short-lived = e .... - ¥
-

ASCs (5)

ntibodies (Ab) :
\E\ * ... \ ....._.".
// e, -~ TR

-£ Ty
Long-lived iaﬂb ! ;{ ! ____.-" L
ASCs (L) )
-+- : . | | | | |
.. H I ]
19

Pasin et al. 2020; Alexandre et al. 2024



Lasso-SAMBA

Parameter-Covariate link Selected in the final model NOT selected in the final model

In the generation model True Positive (TP) False Negative (FN)

NOT in the generation model False Positive (FP) True Negative (TN)

| FP FN
False Discovery Rate: FDR = TP & FP False Negative Rate: FNR = TN + FN

2TP
2TP + FN + FP

Fl-score: Flg . re =

20



Lasso-SAMBA

Yy A N 2 , = - - 8 g & B M ¥
A \\“:‘ \ = 3 It W - A . - R -y A 15 A ~a

v A o e . ' B A w B B -l ¥ & | n
| ¥ | e | y 2 ) It - X

4 Er ¥ R o ol i 2

3 y R y - \ Ao = ': e = o oy & = d

la al 4 g . \ g - - 3 . - < s T -

e

Error Rate Com pariSOn Table Computation Time Comparison

Among 100 simulated datasets of humoral immune response

. COnfidence |nterva| to prime-boost of Ad26.ZEBOV/MVA-BN-FILO vaccine against

Rate Median (quant”es 950/0) ((;Z(t))\?:i;ct)er!;OO individuals, with 200 gaussian correlated
False Discovery Rate : 1

- stepAIC with stat. test [50.0%,83.8%] c

- Lasso : E[FDR]<10% [0.0%:25.0%] :
False Negative Rate : @ :

- stepAlC with stat. test 0.0% [0.0%:0.0%] g :

- Lasso : E[FDR]<10% 0.0% [0.0%:0.0%] -4
-1 score : § 398 s

- stepAIC with stat. test 42.9% [27.9%;66.7%] g 0

- Lasso : E[FDR]<10% 100.0% [85.7%:100.0%] S =
» FInal Final model without any False Negatives : 300 - 281 s

- sStepAlC with stat. test : 99%

- Lasso : E[FDR]<10% : 100%
» Final model is the true one : FENEE IRrRSE RS CIEDRICI0%

- stepAlC with stat. test : 0% Method used

- Lasso : E[FDR]<10% : 81%

R s " Talo PN shoadin ol okl e o § O T NIV e -~
Among 100 simulated datasets of humoral iImmune respons
BN-FILO vaccine aga ith 201

21



Lasso-SAMBA

Application to vaccine study : VZV

&

1 Clinical study of immune response to vaccination against the Varicella-Zoster Virus (VZV)

1 Gene expression and antibody response data following immunization with ZOSTAVAX, a live attenuated vaccine.
1 35 adult volunteers, 6 datapoints at day O, 7, 14, 30, 90, and 180

O.0 N S B R S E———
i Antibodies secreting cells (ASCs)
I = — i 'ﬁ: T :
3 i ASE: (3) \\ ntibodies (Ab)
T 1 | | g
: ; &
;) 4.0- W =8 i / l 5 #
O | Long-lived H
1 i ASCs (L)
3.5 i N

------------------------------

time (in days) 22



Lasso-SAMBA

Application to vaccine study : VZV

&

1 10,086 profiled genes

1 a subset of 784 protein-coding genes was selected based on functional annotation with roles in
* Interferon signaling,
 Type l Interferon response,
* Neutrophil activation,

e Inflammation, ASSOCIATED GENES : KIFC1 & LEP

* Cytokine/chemokine activity,

e and Cell cvcle regulation

Proportion
1A
| I

2

N

N

2

2

)

=

=
S®

covariates



Lasso-SAMBA

Interpretation '

1 The LEP gene is a player in several common biological pathways involved in the immune response such as JAK-

STAT or NFkB.

frequent but must be tightly regulated

3.9

0 50 100 150
Time

&

1 KIFC1 is involved in cell proliferation and therefore is not specific of immune response. KIFC1 also has the ability
to promote stable mitotic spindle formation during early B cell development where centriole duplication is

| / | \X_ . | EP
4 5 - / A » ‘ \\\A
i /j/;’« \ \K\ \\ v O 3
= N —— E—
o 1/ T E———————
> 4.0- 7 = 0.0
3.0 "

Francisco et al. Obesity, Fat Mass and Immune System: Role for Leptin. Frontiers in Physiology. 2015

Lam et al. Role of leptin in immunity. Cell Mol Immunol. 2007

Lucanus et al. Kinesin superfamily: roles in breast cancer, patient prognosis and therapeutics. Oncogene. 2018
Wu et al. An integrative pan-cancer analysis of kinesin family member C1 (KIFC1) in human tumors. Biomedicines. 2022
Hagan et al. Transcriptional atlas of the human immune response to 13 vaccines reveals predictor of vaccine-induced Ab responses. Nature Immunology. 2022

24
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Toward high dimension
mechanistic moadels using latent
class models

(REmixed Package)



REMixed

&

Motivating study

Evaluation of COVID-19 vaccine

15 adults receiving COVID-19 Pfizer vaccine

Do D7 D
D21 Das D3s
i el

y ﬁ Prime é‘;‘j{ Boost { ' Antibodies measurement

Rinchai et al. 2022

log10(Ab)

30

Patient ID

PZB10
PZB11
PZB12
PZB13
PzZB14
PZB15
PZB16
PZB19

- PZB25

PZB4
PZB5
PZB6
PZB7
PZB8
PZB9

Antibodies secreting cells (ASCs) .

| Tiut |

i Short-lived E

i \:{fnﬂhndies (Ab)
i o -C:"'

| by

5 P
! Long-lived :

i ASCs) ) !

| i, 1

s N

------------------------------

26



REMixed &

Motivating study

Evaluation of COVID-19 vaccine

15 adults receiving COVID-19 Pfizer vaccine e
Antibodies by ELISA sy, | Ao R OGS

PZB10

d

e

4

PZB11

PZB12
PZB13
PzZB14
PZB15
PZB16
PZB19
PZB25
PZB4
PZB5
PZB6
PZB7
PZB8
- PZB9

Do D7 D

p i

D21 Das D3s

Short-lived

Antibo

('

ies (Ab)

/

A
2

[ (S0 IS

Long-lived

:;1&

E—
y f Prime f Boost { ' Antibodies measurement

6000+ genes; 34 gene sets y 8

6
Patient Patient
Do Di D2 D3 Dy Ds Ds D7 Ds Do Du | Pz810 o
{118 1"
*%***— - - 1_ ‘ rl ‘ zig:l 6 PZB12
| | . PZB13 PZB13
| . PZB14
@ 4 \ " " R xg:; % PZB15
O | | : PZB15 z PZB16
S A L | o 3 4 PZB19
D21D22D23 D2uD25sD2¢ D27D2sD29 Dt D3s < VA ool ozBs
m*ﬁ Y : A /) PZB5
m— T — ziiz ! | PZE6
Pze7 YN /Y e
ﬁ/ Prime éﬁ/ Boost Antibodies measurement #r Genetic measurement 2 Z;gg 2- N AL — pzeg

Q Q Q O
\ V - time (in days) 27

time (in days)

Rinchai et al. 2022



REMixed

Methodidea |

Use longitudinal Gene expression as observation of latent compartments

&

“Antibodies secreting cells (ASCs) Observation Model

T < < K+ - N .
For each individual i < N, k < K times (tu)]_Sni, (t”k)jsnki'

Short-lived

ASCs (S) Yij=h (Abi(tij)) T €jj

Grij = ®or + 1:.Si(tijr) + €iji
where € = (eij), ~ N(0,X%)

I<N,j<n;
g = (Eijk)iSN,jSTlik ~ N(O’ O-Ig) .

N y

Long-lived
ASCs (L)

Simultaneous estimation of model parameters are 6 = (1/Jp0p, B, Q,(c%) Lk’ (zlz’)pq)’ (aor) ksK)

and the regularized parameters a = (a;)<x by maximizing log-likelihood under lasso penalization :

LL,,(60,a) = LL(O,a) — Al|a|
28



: Ty — weezzz il Inserm
REMixed A && Unb‘%ﬁ&ux B

REMixed Algoritm — cyclic descent algorithm

LL,.,(0,a) = LL(6,a) — A|a

For a given penalty parameters /, the iteration [ in the estimation procedure correspond to :

At iteration [ :

Current parameters are 8V, a( ).

1. Update a§l+1) for fixed 8 = §W using update formula derived from penalized log-ikelihood maximization.

2. Update 6*+1) for fixed g = ail“) using SAEM algorithm through Monolix software.

- J

We continue itérations until :
. |(9(l+1), a§l+1)) — (9(”, a(l)) H < & (parameters stability)

* |LLyen (8(l+1),a§l+1)) LLyen (9(1) a(l))| &, (penalised log-likelihood stability)

29



REMixed
REMixed Algoritm — Choice of lambda

&

Presented procedure was given a penalty parameter A.

For A = {/11 = Anax X a1 <[ < N} With Ay = maX(a LL(H(O) a)‘“ OK)

BICc(A) = —2LL(6%, a*) + log(N) dim(6y) + log(n;,;) dim(6z)

1.0-

9000 -

05- 8000 -

a
criterion
-..\l
(@»]

(@»]

(@»]

0.0- o0 o ) o ®

6000 -
A.min = 161.54

0000 " @t o e e e e e e e e e e ICL@ i4£9&9£ —

05-
0 2000 4000 6000 A
A

A final SAEM is then computed followed by statistical test to remove non-significant biomarkers.
30



REMixed &

Simulations setting

Structural Model individuals, 50 biomarkers — 10 informative biomarkers , replicates
ng::(> )= —55i5i((t)) TR log(&s,) = log (&s,,,) +n?
A i t) = (pSSl t) — Ab'A i t Ab 5.0 . .
: ) 51 ‘ log(6,4,.) = log (SAbpop) + n; o informative
S t = O — Loa - 054
, lo =log(¢s,,,)+nf | &° 5
Ab(\t — O) — 1000 g( ) g (pSpop nl ‘§ -9‘._) 0.0 4
Statistical Model 0 lt(i):;e (in day?;))[) 300 0 5 time1z)in days)ﬁi 20
Noise [ | Noise
775( ~ N(O' a))z()’ X € {SJ Ab} (p} | " . 1.0
Observation Model ¢, € {0,7,21,123,180,300} ;¢! € {0, ..., 21} £ o) D ™
Y;j = logyg (Abi(tj)) + &5 (gij) ~ N (0,05, ) iid
2 . ('3 ‘I) ‘110 115 2'(.) (') ;) 1'0 '1'5 2‘( )
le] — aok + CllkSl(t]’) + gkl] (gkl]) ~ N(O) O-Gk ) ”d time (in days) time (in days)

Pasin et al. 2020; Alexandre et al. 2024; Rinchai et al. 2024 31



REMixed

Simulations results

100% - FPR : 5% [0.0%:12.5%]
FNR : 0% [0.0%:0.0%]
5% - F1-score : 91.2% [80.0%;100.0%]
50% -
25% -
5%

1 1 1 1 1 1 1
1 2 3 4 5 6 7 1011 12131415161718192021 22232425262728293031 32333435363738394041424344454647484950

Genes

&

sauab Og
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Conclusions and perspectives



Conclusion

V- . - alles . - -
v % V4 - Nyl WSS
o~ \ i C M on g DERESUREE I d 8 8
! B LA | 7 S AR S T\ 1T TP R e S thamatiques § .
A iy N & T 1| » " ues W s 3 P RiLE -

> &y _ el w J B = ' §

N 4 B SR WD & B DN D e -

e Ao » s A 4 8 & v B e o e

2 I\ Y B 5 O Y ¢ e - i - - T —c

o N ’\;js.\'m,, N & e 'y & A »” - _— et B ] i & ok salianal

e ol v\;‘ -y N T - db b o | \ B R a 9 e Ty BT e i gAY Sl gV A

. NA : . - Vs E Sy - . 30 |3 Fante ot 08 |a rechorche mesicnle
Ao 1 N

1 Packages lasso-SAMBA and Remixed have been released on CRAN

CRAN lasso-SAMBA CRAN REMixed

1 Find relevant application of these methods (including in pharmacogenomics) and evaluate if assumptions
can/have to be relaxed (ie. Linear relationship).

Lasso-SAMBA g(6;(t)) = g(8,) + h(X;(t)) + u;
REMixed Gkij — h(Si(t]{), gkij)
34
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ethod : Lasso Selection i

Indi¥dual Parameter regression :

We have a previoulsy build model M, at iteration k, with parameters 8% | (l/)i(k)) ; we write the

i<N
regression model for each parameter :
r ™
K K
g (l/Jl( )) = Ji ( fgo}) + BX;
N Y

‘ 5
Tibshirani, 1996



Nethod :

We have a previoulsy build model M}, at iteration k, with parameters 8% (llJi(k))

regression model for each parameter :

-

g (I/Ji(k)) = Ui ( ;(9]29

)+ﬁ&

We then compute the lasso estimator

-

p= agmint 3 (o (1) -

I<N

(k)
pop

)- 1)

MBly

Where 4 > 0 is a data-driven penalization parameter.

I<N

- we write the
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Meinshausen and Buhlmann, 2010

N ethc_ﬁ*

' Stability Selec#on

— LASSO
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Covs | ..
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Covs | ..
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Covs | ..

Covy,

Cov,

Cov,




@I\/Iethod

For a given 4

Cov,

Covs | ..

Cov,

Covs | ..

Cov,

Covsy | ..

Covn

Coun

Covn

~\-\\\‘5L Cov,q

Cov,

Covs | ..

0,01

higher thar@
ogiven threchol

0,92

0,63

Cov,

0,20

Keep only
covariates
whose selection
frequency is




WNlethod : Parameters caﬁbrationﬁnd ’&*

election enhanced by stability selection depends on two parameters ﬂ

" Athe penalization parameter *

- Uss the selection thresholds )

Meinshausen and Buhlmann, 2010 — Bodinier and al., 2023



@I\/Iethod :

Lasso selection enhanced by stability selection

4 )

A the penalization parameter

i t¢c the selection thresholds )

! Decreasing IC in covariate selection step by stepAlC in SAMBA seems to allows algorithm to stop.

> Rather than one single model, we construct a set of relevant model to explore,
searching for one decreasing the IC.




@I\/Iethod :

Lasso selection enhanced by stability selection

4 )

A the penalization parameter

i t¢c the selection thresholds )

! Decreasing IC in covariate selection step by stepAlC in SAMBA seems to allows algorithm to stop.

> Rather than one single model, we construct a set of relevant model to explore,
searching for one decreasing the IC.

Meinshausen and Biuihilmann, 2010 : \

1
/ *[#FP(SA»tss)] < UA,tSS = ZtSS — 5 X 7

Where g, is the average number of features that are selected at least once by the Lasso algorithm, and n the
vumber of covariates. /
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Compute PFER
set 9y ¢ Of upper-bound and IC

ates by Lasso Up, tos
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Uﬂz;tss
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Meinshausen and Buhlmann, 2010 — Bodinier and al., 2023

UA:tSS S a

UA:tSS S a
~

UA:tSS S a

[ Ch,tssl

= min(IC,—LtSS)

~
T

= min(ICMSS) )

WNethod : Parameters céﬁbratiorﬁand ’&
E

*




(2)Vethod : REMix

Update formula of regularized parameters.

At this step, we suppose fixed 8V, and current estimate a(¥

We want to solve
aal(LL(B(l),a) —Aal) =0

We use a second order Taylor development

1
LL(6W,a) = LL(6W,a®) + (a — a(l))TaaLL(H(l), a) ‘ —— (a — a(l))Té)OZ(LL(H(D, a) ‘ (a —a®)
a=a a

=q

The update formula for reqularized parameters a, :

) l o
05, LL(OW, )| 5 gy
alttt) = A—2
) .
, if A<+A
aélkLL(H(l), al) |a:a(l)
L0, otherwise.

With A a function of gradient, hessian and current estimates.




@Simulation Studies

Initialization Strategy

* We randomly group genes by pairs and run a SAEM
algorithm for each pair.

* The initialization yielding the best log-likelihood is
selected to launch the final algorithm.

- -
NS
90000 0000000000 CCOIOOIOCOE OO 00 0000 0000

£
% F, .
e 2]

\Z
<5 LA LA R & X :..:........... ......:..:. L L X N

20 30
2nd gene

40

50

Log-likelihood
maximum

Log-Likelihood
-30000

-32500
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