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INTRODUCTION AND MOTIVATION
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Starting point : Vaccine development for treatment and control of infectious diseases

Motivations - Vaccinometrics
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Introduction

❑  How it works ?

 

❑  How long ?

❑  How to predict the response 
in each individual ? 

❑  What is the optimal 
vaccination strategy ? 

Sparse longitudinal noisy measures



❑ Structural model (ODE-based)

Mechanistic models – Population approach
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𝑋𝑘 𝑡 = 0 = 𝑋𝑘,0, 𝑘 ∈ {1, … , 𝐾}
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Short-lived

ASCs (S)

Long-lived

ASCs (L)

Antibodies secreting cells (ASCs)

𝛿𝑆

𝛿𝐿

𝑑𝑆

𝑑𝑡
= −𝛿𝑆 𝑆

𝑑𝐿

𝑑𝑡
= −𝛿𝐿 𝐿

𝑆 𝑡 = 0 = 𝑆0

L 𝑡 = 0 = 𝐿0
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Antibodies (Ab)
Short-lived

ASCs (S)

Long-lived

ASCs (L)

Antibodies secreting cells (ASCs)

𝜃𝑆

𝛿𝑆

𝛿𝐿

𝜃𝐿

𝛿𝐴𝑏

𝑑𝑆

𝑑𝑡
= −𝛿𝑆 𝑆

𝑑𝐿

𝑑𝑡
= −𝛿𝐿 𝐿

𝑑𝐴𝑏

𝑑𝑡
= 𝜃𝑆𝑆 + 𝜃𝐿𝐿 − 𝛿𝐴𝑏𝐴𝑏

𝑆 𝑡 = 0 = 𝑆0

L 𝑡 = 0 = 𝐿0

𝐴𝑏 𝑡 = 0 = 0

𝜃 = (𝛿𝑆, 𝛿𝐿, 𝜃𝑆, 𝜃𝐿, 𝛿𝐴𝑏)
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Antibodies (Ab)
Short-lived

ASCs (S)

Long-lived

ASCs (L)

Antibodies secreting cells (ASCs)

𝜃𝑆

𝛿𝑆

𝛿𝐿

𝜃𝐿

𝛿𝐴𝑏

l𝑜𝑔 𝜃𝑆 𝑖 = log 𝜃𝑆 0 + 𝛽𝐴𝐺𝐸 𝐴𝐺𝐸𝑖 + 𝑢𝑖 𝑢𝑖∼ 𝑁(0,𝜔)

Population average value

Effect of covariates
Ensure positiveness of rates

Residual heterogeneity
Random effect
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Introduction

Inverse 

…

SAEM Monolix
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Days

High frequency transcriptomics (RNA-seq) from self collected finger-prick blood
Study: COVERAGE-Immuno
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the whole-blood Tempus and 
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between cell abundance by 
ICS and from transcriptomic 
data after deconvolution

Lhomme et al. Submitted
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Introduction

Days

High frequency transcriptomics (RNA-seq) from self collected finger-prick blood
Study: COVERAGE-Immuno

Good concordance between 
the whole-blood Tempus and 
Finger prick-test 

Baseline transcriptomics data as 
covariates in the mechanistic model.

R package Lasso-SAMBA

1

2 longitudinal transcriptomics data as 
observations of latent 
compartments.

R package REMixed

Reasonable concordance 
between cell abundance by 
ICS and from transcriptomic 
data after deconvolution

Lhomme et al. Submitted
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Using transcriptomic data as 
explanatory covariates

(lasso-SAMBA Package)



Model Building strategy
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Lasso-SAMBA 

Antibodies (Ab)
Short-lived

ASCs (S)

Long-lived

ASCs (L)

Antibodies secreting cells (ASCs)

𝜃𝑆

𝛿𝑆

𝛿𝐿

𝜃𝐿

𝛿𝐴𝑏

Use baseline Gene expression as explanatory covariates

Sex

Continent

Age

Lab

HIGH-DIMENSION
Covariate models

𝑔 𝜃𝑖 𝑡 = 𝑔 𝜃0 + 𝜙𝑋𝑖 𝑡 + 𝑢𝑖



Method
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Lasso-SAMBA

Tibshirani et al. 1996; Meinshausen et al. 2010; Bodiner et al. 2023



Simulations
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Lasso-SAMBA

Covariates effetcs :
•𝐴𝐺𝐸 ∼ 𝒩(35,42) on 𝜑𝑆,
•𝐺1 ∼ 𝒩(0,1) on 𝜑𝐿
•𝐺2 ∼ 𝒩(0,1) on 𝛿𝐴𝑏

P = 200 gaussian correlated covariates (P=1000 similar results)
R = 100 replicates,
N = 100 individuals (N=20 similar results).

Pasin et al. 2020; Alexandre et al. 2024



Simulations
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Lasso-SAMBA

Parameter-Covariate link Selected in the final model NOT selected in the final model

In the generation model True Positive (TP) False Negative (FN)

NOT in the generation model False Positive (FP) True Negative (TN)

𝐹𝐷𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
False Discovery Rate : 𝐹𝑁𝑅 =

𝐹𝑁

𝑇𝑁 + 𝐹𝑁
False Negative Rate :

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
F1-score :



Simulations
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Lasso-SAMBA



Application to vaccine study : VZV

22

❑  Clinical study of immune response to vaccination against the Varicella-Zoster Virus (VZV)

❑ Gene expression and antibody response data following immunization with ZOSTAVAX, a live attenuated vaccine.

❑ 35 adult volunteers, 6 datapoints at day 0, 7, 14, 30, 90, and 180

Lasso-SAMBA



Application to vaccine study : VZV

23

❑ 10,086 profiled genes

❑ a subset of 784 protein-coding genes was selected based on functional annotation with roles in 
• Interferon signaling, 

• Type I Interferon response, 

• Neutrophil activation,

• Inflammation, 

• Cytokine/chemokine activity, 

• and Cell cycle regulation

ASSOCIATED GENES : KIFC1 & LEP

Lasso-SAMBA



Interpretation

24

Francisco et al. Obesity, Fat Mass and Immune System: Role for Leptin. Frontiers in Physiology.  2018
Lam et al. Role of leptin in immunity. Cell Mol Immunol. 2007
Lucanus et al. Kinesin superfamily: roles in breast cancer, patient prognosis and therapeutics. Oncogene. 2018
Wu et al. An integrative pan-cancer analysis of kinesin family member C1 (KIFC1) in human tumors. Biomedicines. 2022
Hagan et al. Transcriptional atlas of the human immune response to 13 vaccines reveals predictor of vaccine-induced Ab responses. Nature Immunology. 2022

❑ The LEP gene is a player in several common biological pathways involved in the immune response such as JAK-
STAT or NFkB. 

❑ KIFC1 is involved in cell proliferation and therefore is not specific of immune response. KIFC1 also has the ability 
to promote stable mitotic spindle formation during early B cell development where centriole duplication is 
frequent but must be tightly regulated

Lasso-SAMBA
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Toward high dimension 
mechanistic models using latent 
class models 

(REmixed Package)



Motivating study
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REMixed

Rinchai et al. 2022

Evaluation of COVID-19 vaccine

15 adults receiving COVID-19 Pfizer vaccine
Antibodies by ELISA



Motivating study
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REMixed

Rinchai et al. 2022

Evaluation of COVID-19 vaccine

15 adults receiving COVID-19 Pfizer vaccine

6000+ genes; 34 gene sets

Antibodies by ELISA



Method Idea
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REMixed

Antibodies (Ab)
Short-lived

ASCs (S)

Long-lived

ASCs (L)

Antibodies secreting cells (ASCs)

𝜃𝑆

𝛿𝑆

𝛿𝐿

𝜃𝐿

𝛿𝐴𝑏

Use longitudinal Gene expression as observation of latent compartments

For each individual 𝑖 ≤ 𝑁, 𝑘 ≤ 𝐾 times 𝑡𝑖𝑗 𝑗≤𝑛𝑖
, 𝑡𝑖𝑗𝑘 𝑗≤𝑛𝑘𝑖

:

𝒀𝒊𝒋 = 𝒉 𝑨𝒃𝒊 𝒕𝒊𝒋 + 𝝐𝒊𝒋

𝑮𝒌𝒊𝒋 = 𝜶𝟎𝒌 + 𝜶𝟏𝒌𝑺𝒊 𝒕𝒊𝒋𝒌 + 𝜺𝒊𝒋𝒌
where 𝜖 = 𝜖𝑖𝑗 𝑖≤𝑁,𝑗≤𝑛𝑖

∼ 𝒩 0, Σ2

𝜀𝑘 = 𝜀𝑖𝑗𝑘 𝑖≤𝑁,𝑗≤𝑛𝑖𝑘
∼ 𝒩 0, 𝜎𝑘

2  .

Observation Model

Simultaneous estimation of model parameters are 𝜽 = 𝝍𝒑𝒐𝒑, 𝜷, 𝛀, 𝝈𝒌
𝟐

𝒌≤𝑲
, 𝚺𝒑

𝟐
𝒑≤𝑷

, 𝜶𝟎𝒌 𝒌≤𝑲

and the regularized parameters 𝜶 = 𝜶𝟏𝒌 𝒌≤𝑲 by maximizing log-likelihood under lasso penalization :

𝑳𝑳𝒑𝒆𝒏 𝜽, 𝜶 = 𝑳𝑳 𝜽, 𝜶 − 𝝀 𝜶

G



REMixed Algoritm – cyclic descent algorithm
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REMixed

𝑳𝑳𝒑𝒆𝒏 𝜽, 𝜶 = 𝑳𝑳 𝜽, 𝜶 − 𝝀 𝜶

For a given penalty parameters 𝜆, the iteration 𝑙 in the estimation procedure correspond to : 

Current parameters are 𝜃 𝑙 , 𝛼1
𝑙

.

1. Update 𝛼1
𝑙+1

for fixed 𝜃 = 𝜃 𝑙 using update formula derived from penalized log-ikelihood maximization.

2. Update 𝜃 𝑙+1 for fixed 𝛼1 = 𝛼1
𝑙+1

using SAEM algorithm through Monolix software. 

At iteration 𝑙 :

We continue itérations until : 
• 𝜃 𝑙+1 , 𝛼1

𝑙+1
− 𝜃 𝑙 , 𝛼1

𝑙

2
≤ 𝜀1 (parameters stability)

• 𝐿𝐿𝑝𝑒𝑛 𝜃 𝑙+1 , 𝛼1
𝑙+1

− 𝐿𝐿𝑝𝑒𝑛 𝜃 𝑙 , 𝛼1
𝑙

≤ 𝜀2 (penalised log-likelihood stability)



REMixed Algoritm – Choice of lambda
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REMixed

Presented procedure was given a penalty parameter 𝜆.

For Λ = 𝜆𝑙 = 𝜆𝑚𝑎𝑥 × 𝛼
𝜆

𝑙

𝑁𝜆; 1 ≤ 𝑙 ≤ 𝑁 , with 𝜆𝑚𝑎𝑥 = max 𝜕𝛼𝐿𝐿 𝜃 0 , 𝛼 ȁ𝛼 =0𝐾 ,

𝐵𝐼𝐶𝑐(𝜆) = −2𝐿𝐿 𝜃∗, 𝛼∗ + log 𝑁 dim 𝜃𝑅 + log 𝑛𝑡𝑜𝑡 dim 𝜃𝐹

A final SAEM is then computed followed by statistical test to remove non-significant biomarkers.



Simulations setting
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REMixed

ሶ𝑆𝑖(𝑡) = −𝛿𝑆𝑖𝑆𝑖(𝑡)
ሶ𝐴𝑏𝑖(𝑡) = 𝜑𝑆𝑖 𝑆𝑖(𝑡) − 𝛿𝐴𝑏𝑖𝐴𝑏𝑖 𝑡

𝑆 𝑡 = 0 = 5
𝐴𝑏 𝑡 = 0 = 1000

log 𝛿𝑆𝑖 = log 𝛿𝑆𝑝𝑜𝑝 + 𝜂𝑖
𝑆

log 𝛿𝐴𝑏𝑖 = log 𝛿𝐴𝑏𝑝𝑜𝑝 + 𝜂𝑖
𝐴𝑏

log 𝜑𝑆𝑖 = log 𝜑𝑆𝑝𝑜𝑝 + 𝜂𝑖
𝜑

Structural Model

Statistical Model

𝜂𝑖
𝜒
∼ 𝒩 0,𝜔𝜒

2 , 𝜒 ∈ 𝑆, 𝐴𝑏, 𝜑

Observation Model

(𝜀𝑖𝑗) ∼ 𝒩 0, 𝜎𝐴𝑏
2 iid

(𝜀𝑘𝑖𝑗) ∼ 𝒩 0, 𝜎𝐺𝑘
2 iid

𝑡𝑗 ∈ 0,7,21,123,180,300 ; 𝑡𝑗
′ ∈ {0,… , 21}

25 individuals, 50 biomarkers – 10 informative biomarkers , 200 replicates

Pasin et al. 2020; Alexandre et al. 2024; Rinchai et al. 2024

𝑌𝑖𝑗 = log10 𝐴𝑏𝑖 𝑡𝑗 + 𝜀𝑖𝑗

𝐺𝑘𝑖𝑗 = 𝛼0𝑘 + 𝛼1𝑘𝑆𝑖 𝑡𝑗
′ + 𝜀𝑘𝑖𝑗

informative

Noise Noise

Ab



Simulations results
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REMixed
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Conclusions and perspectives



Perspectives

34

Conclusion

❑ Packages lasso-SAMBA and Remixed have been released on CRAN 

❑ Find relevant application of these methods (including in pharmacogenomics) and evaluate if assumptions 
can/have to be relaxed (ie. Linear relationship).

CRAN REMixedCRAN lasso-SAMBA

Lasso-SAMBA 𝑔 𝜃𝑖 𝑡 = 𝑔 𝜃0 + ℎ(𝑋𝑖 𝑡 ) + 𝑢𝑖

REMixed 𝐺𝑘𝑖𝑗 = ℎ(𝑆𝑖 𝑡𝑗
′ , 𝜀𝑘𝑖𝑗 )
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2 Method : Lasso Selection

Tibshirani, 1996 

Individual Parameter regression :

We have a previoulsy build model ℳ𝑘 at iteration 𝑘, with parameters 𝜃 𝑘 , 𝜓𝑖
𝑘

𝑖≤𝑁
; we write the 

regression model for each parameter :

𝑔 𝜓𝑖
𝑘 = 𝑔𝑙 𝜓𝑝𝑜𝑝

𝑘 + 𝛽𝑋𝑖
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2 Method : Lasso Selection

Tibshirani, 1996 

Lasso Regression  :

We then compute the lasso estimator

መ𝛽 = arg min
𝛽∈ℝ𝑛

෍

𝑖≤𝑁

𝑔 𝜓𝑖
𝑘 − 𝑔 𝜓𝑝𝑜𝑝

𝑘 − 𝛽𝑋𝑖
2
+ 𝜆 𝛽 1

Where 𝝀 > 𝟎 is a data-driven penalization parameter. 
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2 Method : Stability Selection 

Meinshausen and Bühlmann, 2010 

Keep only
covariates

whose selection
frequency is

higher than a 
given thresholds

𝒕𝑺𝑺.

For a given 𝝀
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> Rather than one single model, we construct a set of relevant model to explore, 
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Lasso selection enhanced by stability selection depends on two parameters

𝝀 the penalization parameter
𝒕𝑺𝑺 the selection thresholds

Decreasing IC in covariate selection step by stepAIC in SAMBA seems to allows algorithm to stop. 

> Rather than one single model, we construct a set of relevant model to explore, 
searching for one decreasing the IC. 

Meinshausen and Bühlmann, 2010 : 

𝔼 #𝐹𝑃 𝒮𝜆,𝑡𝑆𝑆 ≤ 𝑈𝜆,𝑡𝑆𝑆 =
1

2𝑡𝑆𝑆 − 2
×
𝑞𝜆
2

𝑛

Where 𝑞𝜆 is the average number of features that are selected at least once by the Lasso algorithm, and 𝑛 the            
number of covariates. 
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{𝜆, 𝑡𝑆𝑆}

Selected set 𝒮𝜆,𝑡𝑆𝑆 of 

covariates by Lasso 
𝒮𝜆1,𝑡𝑆𝑆1

𝒮𝜆2,𝑡𝑆𝑆2

𝒮𝜆𝑘,𝑡𝑆𝑆𝑘

. .
 . 

. .
 . 

𝒮𝜆𝑁,𝑡𝑆𝑆𝑁

. .
 . 
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Compute PFER 
upper-bound and IC

𝐼𝐶𝜆1,𝑡𝑆𝑆1
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. .
 . 

𝑈𝜆1,𝑡𝑆𝑆1
𝐼𝐶𝜆1,𝑡𝑆𝑆1

𝑈𝜆,𝑡𝑆𝑆 ≤ 𝛼

𝒮𝜆𝑘,𝑡𝑆𝑆𝑘

𝑈𝜆2,𝑡𝑆𝑆2
𝐼𝐶𝜆2,𝑡𝑆𝑆2

𝑈𝜆𝑘,𝑡𝑆𝑆𝑘
𝐼𝐶𝜆𝑘,𝑡𝑆𝑆𝑘
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𝑈𝜆,𝑡𝑆𝑆 ≤ 𝛼

𝑈𝜆,𝑡𝑆𝑆 ≤ 𝛼

𝐼𝐶𝜆𝑘,𝑡𝑆𝑆𝑘
= min 𝐼𝐶𝜆,𝑡𝑆𝑆

= min 𝐼𝐶𝜆,𝑡𝑆𝑆



2
Update formula of regularized parameters.

Method : REMix algorithm
At this step, we suppose fixed 𝜃 𝑙 , and current estimate 𝛼 𝑙

We want to solve 
𝜕𝛼1 𝐿𝐿 𝜃 𝑙 , 𝛼 − 𝜆 𝛼 = 0

We use a second order Taylor development

𝐿𝐿 𝜃 𝑙 , 𝛼 = 𝐿𝐿 𝜃 𝑙 , 𝛼(𝑙) + 𝛼 − 𝛼(𝑙)
𝑇
𝜕𝛼𝐿𝐿 𝜃 𝑙 , 𝛼 ቚ

𝛼=𝛼(𝑙)
−
1

2
𝛼 − 𝛼(𝑙)

𝑇
𝜕𝛼
2𝐿𝐿 𝜃 𝑙 , 𝛼 ቚ

𝛼=𝛼(𝑙)
𝛼 − 𝛼(𝑙)

The update formula for regularized parameters 𝛼1𝑘 :

𝛼1𝑘
𝑙+1 =

𝐴 + 𝜆

𝜕𝛼1𝑘
2 𝐿𝐿 𝜃 𝑙 , 𝛼 ȁ𝛼=𝛼(𝑙)

, 𝑖𝑓 𝐴 < −𝜆

𝐴 − 𝜆

𝜕𝛼1𝑘
2 𝐿𝐿 𝜃 𝑙 , 𝛼1 ȁ𝛼=𝛼(𝑙)

, 𝑖𝑓 𝐴 < +𝜆

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

With 𝐴 a function of gradient, hessian and current estimates.

Tibshirani, 1996 – Park et al., 2007 7



3 Simulation Studies

Initialization Strategy

• We randomly group genes by pairs and run a SAEM 
algorithm for each pair.

• The initialization yielding the best log-likelihood is 
selected to launch the final algorithm.

11
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