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Importance of covariates in Pharmacometrics

o Clinical phase of new drug development

Detect individual characteristics = covariates, likely to explain inter-individual variability

1. FDA (2022) Guidance for Industry Population Pharmacokinetics
2. PHILIPR et al. (2024) Journal of Pharmacokinetics and Pharmacodynamics
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Design optimisation

o Design optimisation : Before data collection —maximise informativeness of data to be collected
o FDA! highlights use of Clinical Trial Simulations (CTS) and optimal design

1. FDA(2022) Guidance for Industry Population Pharmacokinetics 5. BazzoLl et al (2009) Statistics in Medicine
3. MEeNTRE et al. (1997) Biometrika 6. NveeRrc et al. (2015) British Journal of Clinical Pharmacology
4. MEeNTRe et al. (2013) CPT : Pharmacometrics & Systems Pharmacology
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Design optimisation

o Design optimisation : Before data collection —maximise informativeness of data to be collected
o FDA! highlights use of Clinical Trial Simulations (CTS) and optimal design

o Optimal design theory in NLMEM
o Based on Fisher Information Matrix (FIM) 3 4 | no analytical solution
o For continuous responses :
® First-order linearisation around mean of random effects — Gaussian approximation with analytical FIM 5
—Implemented in various software tools ©

Covariates? — Literature lacks comprehensive treatment of the influence covariate distributions
o Considering covariates allows quantifying impact on

® Clofratios ® Statistical power ® Number of subjects needed (VS N) for desired power
o Tools handle only fixed covariate values — Discrete combinatorial explosion

—impractical for continuous covariates
o Considering covariates as random variables introduce another integral

5. Bazzoul et al (2009) Statistics in Medicine

1. FDA(2022) Guidance for Industry Population Pharmacokinetics
6. NvBERG et al. (2015) British Journal of Clinical Pharmacology

3. MEeNTRE et al. (1997) Biometrika
4. MEeNTRe et al. (2013) CPT : Pharmacometrics & Systems Pharmacology
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Previous work’ - Design evaluation with covariates

Journal of Pharmacokinetics and Pharmacodynamics (2025) 52:38
https://doi.org/10.1007/510928-025-09987-2

Check for
updates.

Using Fisher Information Matrix to predict uncertainty in covariate
effects and power to detect their relevance in Non-Linear Mixed Effect
Models in pharmacometrics

Lucie Fayette!2( - Karl Brendel? - France Mentré'

Received: 5 November 2024 / Accepted: 9 June 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

o Design evaluation accounting for covariate distribution : Discrete, continuous + correlations
o FIM with Monte Carlo integration over covariate distribution

7. FAYETTE et al (2025) Journal of Pharmacokinetics and Pharmacodynamics 8. DurLOT et al (2025) The AAPS Journal
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Design evaluation accounting for covariate distribution : Discrete, continuous + correlations
FIM with Monte Carlo integration over covariate distribution
Validated via simulation study + application to Cabozantinib PK

Predict uncertainty, power of test and NSN

Applied to optimise sampling in missing data imputation study &
7. FAYETTE et al (2025) Journal of Pharmacokinetics and Pharmacodynamics 8. DUFLOT et al (2025) The AAPS Journal
Lucie Fayette 19 septembre 2025 PmX in France
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Objectives

Support pharmacometrics design of future clinical trials

o Compute optimal covariate distribution

relationships with desired power

o Develop a faster integration over covariate distribution in FIM computation

o Define NSN to demonstrate relevance (or non-relevance) of important covariate

Lucie Fayette 19 septembre 2025 PmX in France
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Overview

® Methods
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Non-Linear Mixed Effect Models

The ;" observation y;; for the i*" subject :

Yig = f(&i,0:) + 9(&,0i,0)ei;

e f,structural non-linear model e &;, elementary design

o Individual parameters: 0; = u (u, 8, Zi, n:)
o u, typical values o S, covariate effects o Z;, covariate vector o n; ~ N(0, 2) individual random effects

o Residual error o g, depending on &;, 6; + some parameters ¢ o random variable ; ~ N (0, I,;)
v = {u, B, Q,0}, P-vector of population parameters

Lucie Fayette 19 septembre 2025 PmX in France 7/21



FIM definition with covariates

o Given o anelementary design &; o a population parameter vector ¥ © a covariate realisation z;

dlogl(yi; &, ¥, 2;) dlogl(ys; &, \If2)>

Mrp(&i, ¥, 2:) =E ( o U7

where I(yi; &, ¥, 2;) = fp(yz‘ [ 159, zi, £)p(Ni; W, 24 )dn;
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FIM definition with covariates

o Given o anelementary design &; o a population parameter vector ¥ © a covariate realisation z;

dlogl(yi; &, ¥, 2;) dlogl(ys; &, \I/z))

MFp(§,%,2z;) =E < o U7

where l(yi; &, %, 2) = [ p(yi | 15 W, i, €)p(0i5 ¥, 2i)dn;

e Giveno a popuLat|on design = = {N, (&1, ... ,&n) } with N subjects o a distribution pz for covariates

Mrp(E,¥,pz) = ZMF &,¥,pz) where Mp(&,V,pz) = /MF(&,‘I’ 2)pz(z)dz

i=1

Lucie Fayette 19 septembre 2025 PmXin France 8/21



Computing Mg (&, Y, paont) : Copula + Gauss-Legendre Quadrature
e pz Characterisation :
o D discrete covariates, each with Qs, § = 1,..., D categories
—Zpis,i ~ distribution with n(@P) = H _ Q5 values : zpis,q With probability ppis,4, d = 1,...,n(@P)
OV zpis,d. We denote PContlzpis.q the distribution of Z¢ont,; conditionally to zp;s ¢
n(@D)
MFp(&,¥,pz) = Z Pis,d Mr (&, ¥, 2Dis,ds PContlzpis.q)
d=1

o Distribution pcone= ;. , —+Continuous covariate modelling with copula ”
o Rosenblatt transform 1 : T 41 .. L (Zoont) ~ U ([0; 1]0)

-1
M (€W, 2Dis iy Poontlonr, 2) = Mr (g U, 2pisds Tgiep, (1, ,uc)) dus ... duc
[0;1)€
o Gauss-Legendre Quadrature (GLQ) ! with n(?) nodes
2@ (@
F (517 \ij zDis,d;pC’onﬂzDisyd) ~ § e § Wqy - wchF (f \II ZDis,d TCont|zDZS d(vth PR 7”40))

q1=1

7. FAYeTTE et al. (2025) Journal of Pharmacokinetics and Pharmacodynamics 10. ROSENBLATT (1952) The Annals of Mathematical Statistics

9. Zwep et al. (2024) Clinical Pharmacology & Therapeutics 11 GoLus & WELSCH (1969) Mathematics of Computation
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Covariate distribution optimisation

Z

o Discrete covariates —Optimise the proportion of each category

VAN

Zy
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Covariate distribution optimisation

Z Zy Zs

o Discrete covariates —Optimise the proportion of each category

o Continuous covariates —Segment their domains into intervals, chosen for their clinical meaning
—Optimise proportion of each interval in the trial population

o Preserves the continuous nature of covariates in the FIM computation
o Discrete segmentation —Reduces dimensionality + Facilitates subject inclusion in clinical setting
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Covariate distribution optimisation

Z Zy Zs

o Discrete covariates —Optimise the proportion of each category

o Continuous covariates —Segment their domains into intervals, chosen for their clinical meaning
—Optimise proportion of each interval in the trial population

o Preserves the continuous nature of covariates in the FIM computation
o Discrete segmentation —Reduces dimensionality + Facilitates subject inclusion in clinical setting

o Combining categories x intervals — L possible distributions for covariate

i vector Z
I L
i Mp (&, U, pz(@)) = Y @ Mr (&, ¥, pz,1)
I =1
T | ol where & = (z1),_, _; the vector of proportions of subjects in the trial population associated

with covariate distributions pz,;
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Optimisation with Projected Gradient Descent Algorithm (PGD)

o D-criterion  ¢p(Z, ¥, pz(x)) = (det (Mp (2, ¥, pz(2))))"'"  with P the size of w

o Constraints — Q the constraint space
o x:vector of proportions: eVl z;€[0;1] o> z;=1
o Bound constraints

12. FaverTe et al (2023) The AAPS Journal
13. PFIM: CRAN package version 6.1
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Optimisation with Projected Gradient Descent Algorithm (PGD)

o D-criterion  ¢p(Z, ¥, pz(x)) = (det (Mp (2, ¥, pz(2))))"'"  with P the size of w

o Constraints — Q the constraint space
o x:vector of proportions: eVl z;€[0;1] o> z;=1
o Bound constraints

o Projected Gradient Descent Algorithm (PGD)
Tr+1 = Po (wk +axVép (5, \Il,pz(wk)))

with o, € [0; oc] gradiient step-size at the k" iteration, V¢ p gradient of ¢ p with respect to @ 2, Po projection onQ

o Predicted SE: SE(E,V,pz(x))s
o Derive the required SE* to reach a given power in relevance/non-relevance tests
SE(E, ¥ 2
5 Deduce NSNy and NSNyr  NSN(E, ¥, pz(z))s = N ((’S+*Z(m))5)

« Implementation in R using an extension of PFIM6.1. **

12. FaverTe et al (2023) The AAPS Journal
13. PFIM: CRAN package version 6.1
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Overview

@ Illustration on a PK model

Lucie Fayette 19 septembre 2025 PmX in France 12/21



PK model with continuous covariate defining Renal function

. Lo Gy
o 1compartment - IV bolus - linear elimination : f(& = (ti, Dose;) ,0;) = D"Tje'ke Vit
o Combined error:y = f + (a+ bf)
o Covariate effects : log 6; = log Opop + 89,22 + Mo

o SEX and log (%ﬁ;) onV 5 log (%ﬁ;) onCl
Table 1 - Population PK parameter values
Parameter  pc; (L/h) py (L wey wy a (mg/L) b Bv,Sex Bv,BMI Bci,cLcr
Value 0.43 713 024 030 239 008  -035 0.50 027

o Design o 250 mg of drug at time O o 3 samples : 1, 4 and 12 hours post-dose

Lucie Fayette 19 septembre 2025 PmX in France 13/21



Covariate effects

Table 2 - Continuous segmentation

w 0

0 - w0

F(#) (mg/L)
F(t) (mg/L)
F(t) (mg/L)

Condition on covariate Interval Name
18.5 < BMI < 25 kg/m*  Healthy Weight
25 < BMI < 30 kg/m? Overweight
BMI > 30 kg/m? Obesity
CLCR > 90 mL/min Normal RF
60 < CLCR < 90 mL/min Mild RF
30 < CLCR < 60 mL/min  Moderate RF
CLCR < 30 mL/min Severe RF

2

T T T T T T T T T T
o0 2 50 T3 00 123 00 25 50 TS 100 125

T T T
00 25 a0 73 w0 123

Table 3 - Ratio values

TV, Female TV, Obesity. T'C1, Severe RF
0.70 114 0.70

o Reference interval [0.80; 1.25]

Lucie Fayette

t (h) t(h)

Sex = Mide — Female

t(h)

5{{:1/‘]“‘1‘ = Healthy Weight —  Overweiz RF = Soer — Modete — Mild

Fig. 1 - Concentration evolution according to the fixed effects
and univariate covariate effects

19 septembre 2025 PmX in France
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Initial covariate distribution and optimisation

o Initial covariate distribution : NHANES ¥ - 2009 to 2020 —29 409 covariate vectors
o Age between 18 and 80 years old o Body Mass Index (BM1) > 185 kg/m? 5 No missing data

Table 4 - Covariate data summary from the NHANES database

Continuous covariates Continuous segmentation

Covariate mean (sd) median [min; max] Condition on covariate IntervalName %
BM I (kg/m2) 29.5(7.0) 28.21185,923] 18.5 < BMI < 25 kg/m® Healthy Weight 279
CLCR (ml/min) 99.0 (35.6) 97.314.1, 34291 25 < BMI < 30 kg/m? Overweight 327
BMI > 30 kg/m? Obesity 393
Discrete covariates CLCR > 90 mL/min NormalRF 584
Covariate Category Name % 60 < CLCR < 90 mL/min Mild RF 28.3
SEX Male 48.8 30 < CLCR < 60 mL/min Moderate RF 120
Female 51.2 CLCR < 30 mL/min Severe RF 1.2

14. https://wwun.cdc.gov/nchs/nhanes/default.aspx
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Initial covariate distribution and optimisation

o Initial covariate distribution : NHANES ¥ - 2009 to 2020 —29 409 covariate vectors
o Age between 18 and 80 years old o Body Mass Index (BM1) > 185 kg/m? 5 No missing data

Table 4 - Covariate data summary from the NHANES database

Continuous covariates Continuous segmentation

Covariate mean (sd) median [min; max] Condition on covariate IntervalName %
BM I (kg/m2) 29.5(7.0) 28.21185,923] 18.5 < BMI < 25 kg/m® Healthy Weight 279
CLCR (ml/min) 99.0 (35.6) 97.314.1, 34291 25 < BMI < 30 kg/m? Overweight 327
BMI > 30 kg/m? Obesity 393
Discrete covariates CLCR > 90 mL/min NormalRF 584
Covariate Category Name % 60 < CLCR < 90 mL/min Mild RF 28.3
SEX Male 48.8 30 < CLCR < 60 mL/min Moderate RF 120
Female 51.2 CLCR < 30 mL/min Severe RF 1.2

o Few Severe RF —combination SEX only —L = 20
e 2 constraints settings : o Without Constraint : proportion requirements : within [0, 1] and sum to 1

o With constraints : @ Each continuous interval should represent at least 5%
® Severe RF not more than 10%

14. https://wwvn.cdc.gov/nchs/nhanes/default . aspx

Lucie Fayette 19 septembre 2025 PmX in France 15/21


https://wwwn.cdc.gov/nchs/nhanes/default.aspx

Overview

@ Results
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Copula fit diagnostic for combinations including Severe RF

Male Female
35 - 357
30 4 307
A2 25 2 251
Q 20+ Q 20-
8 15 1 8 15 -
].0_ 10_
5 5 - N
O+ S e st N S
15 20 25 30 35 40 1520 25 30 3540 45 50
BMI BMI

Fig. 2 - Visual predictive checks based on the contours of the bivariate density : 99% prediction intervals of
percentile contours compared to the contours observed in the NHANES database.
Percentile contours: 5" __ ¢ 50" _ @ 95thi__ o
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Optimal distributions

Initial ‘Without constraint ‘With constraints

oo m H
O])esn/y | M
All BMI - H I

T T T T T
Severe Normal Mild Moderate  Severe

Healthy | |5 -
Weight

T T T T T T T
Normal Mild Moderate  Severe Normal Mild Moderate
Male BB  Female NN RF

Fig. 3 - Renal case study - Optimal proportions for the covariate distributions for the D-criterion for the different
sets of constraints
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Optimal NSN

Table 5 - Renal case study - Number of subjects needed (N .SN) to reach 80% power in relevance or
non-relevance tests, with the initial and optimal covariate distributions for the D-criterion for the different sets of
constraints

Initial Optimal Distributions
Distribution Without constraint With constraints
NSNg (V, Female ) 167 197 196
NSNyg (V. Obesity) 143 118 107
NSNg(Cl, Severe RF) 602 143 230

—NSN decreased by more than 60%

Lucie Fayette 19 septembre 2025 PmX in France 19721



Optimal NSN as a function of covariate effect

o Sensitivity analysis
o Influence of IIV: 'Normal lIV' scenario + 'High IIV' scenario, in which we; and wy were doubled
o Influence of covariate effect : varying Bci,cLcor. resulting in 7y, severe rRF ranging from 0.40 to 0.75
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Optimal NSN as a function of covariate effect

o Sensitivity analysis
o Influence of IIV: 'Normal lIV' scenario + 'High IIV' scenario, in which we; and wy were doubled
o Influence of covariate effect : varying Bci,cLcor. resulting in 7y, severe rRF ranging from 0.40 to 0.75

1000

NSNg (Cl, Severe

0.4 0.5 0.6 0.7
Stronger effect T'ClSevere RF

Design: — Initial — With constraints ITV: — Normal - - High

Fig. 4 - Renal case study - NSNp (Cl, CLCR (Severe RF) ) to reach 80% power in relevance test for the two IIV
scenarios and as a function of r¢q, severe rRr from 0.40 to 0.75
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Conclusion

o New way of integrating the FIM over the covariate distribution : copula modelling + GLQ
—Faster than Monte Carlo
o Before a study, given a model, a design and a prior covariate distribution :
@ Compute expected power for relevance test on important covariate effects
® Compute NSN to reach desired confidence level
©® Optimise covariate distribution to reduce NSN

15. RIVIERE et al (2016) Biostatistics 20. LoiNnGevILLE et al. (2020) Journal of Biopharmaceutical Statistics
16. NGUYEN & MENTRE (2014) Computational Statistics & Data Analysis 21, SEURAT et al (2020) Statistical Methods in Medical Research

17. UECKERT & MENTRE (201/) Computational Statistics & Data Analysis 22. LEsTINIet al (2015) Pharmaceutical Research

18. Dobbs et al (2005) Journal of Pharmacokinetics and Pharmacodynamics 12. FaverTEe et al (2023) The AAPS Journal

19. Foo et al (2012) Journal of Biopharmaceutical Statistics 23. R package version 7.0 , https ://github.com/packagePFIM/PFIM
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Conclusion

o New way of integrating the FIM over the covariate distribution : copula modelling + GLQ
—Faster than Monte Carlo
o Before a study, given a model, a design and a prior covariate distribution :
@ Compute expected power for relevance test on important covariate effects
® Compute NSN to reach desired confidence level
©® Optimise covariate distribution to reduce NSN

o Dimensionality limitation : number of covariates + number of nodes —Remains more efficient than CTS

Perspectives
o Joint optimisation of covariates + elementary designs
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Computing FIM with covariates
e pz Characterisation :
o D discrete covariates, each with Qs, § = 1,..., D categories

—Zpis,i ~ distribution with n(@P) = H Q,; values : zp;s,q With probability ppis,q, d = 1,...,n(@P)
o V zpis,d, We denote PCont|zpis.q the d|str|but|on of Zgont,s conditionally to zp;s 4

n(@D)
MF(&M \II,pZ) = Z PDis,d MF(fia \Ija ZDis,dy pCont|zDiS’d)
d=1
o Distribution pconi|-p;, , —Continuous covariate modelling with copula
o Rosenblatt transform 1 : T s .. L (Zeont) ~ U ([0; 1]0)

-1
Mpr (617 ‘ll,zDis,dapCont\zDis’d) = Mp (‘E'Lu \Ila ZDis,dy TCO”ﬂzDis d(ulu .. 7u0)) duy .. .duc
[0;1]¢ '

» Gauss-Legendre Quadrature (GLQ) ™ with n{?) nodes

n(@) n(@Q)
-1
F (5’“ \Il7 ZDis,d)pC'onﬂzDi‘g,d) ~ E to E Wqq - - wqoMF (57 \Ij> ZDis,d T00"t|ZD-;3 d(vql PR 7vQC))
q1=1

10. RoseNBLATT (1952) The Annals of Mathematical Statistics
11 GoLuB & WELsCH (1969) Mathematics of Computation
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Ratios for the evaluation of covariate relationships

 Significance test : are covariate effects different from 0 ? —Expected power from FIM 24 7
o Relevance and non-relevance test : assess the magnitude of an effect

o Ratio of change in primary parameters when covariate values change relative to a reference value
—Uncertainty derived from the SE on the covariate effect + power of tests’

o Clinically relevant : if the 90% Cl is completely outside an equivalence interval [R;y, 5 ; Rsup]
o Clinically non-relevant if entirely within

o Foralog-normally distributed parameter with an additive covariate relationship on the log scale
o Ifthe covariate is binary . r; . = eflie
5 If continuous : 7y . (px) = e’t.c(PX=F50) for given percentile PX, with P50 median of covariate distribution
o Influence of belonging to an interval subset involving several covariates
Ratio : expected value of the ratio function, conditional on the associated covariate sub-vector following the
mixture distribution corresponding to the interval subset of interest :
1

T R=— ———
0,L
Zl’eLR Ty

the interval subset
—Uncertainty estimated using the Delta Method + tests based on the resulting Gaussian approximation

24. ReTouT et al (2007) Statistics in Medicine
7. FaverTe et al (2025) Journal of Pharmacokinetics and Pharmacodynamics
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Copula fitting

o Vine copula fitted using the R package rvinecopulib0.6.3112°
o Fit evaluation : simulation-based strategy 26 using 100 replicates + Diagnostics plots with pmxcopula 27

Quadrature settings
o Number of nodes : start with n(@) = 1, stop if Ap (n(@)) = 100 (d)g‘(Q)) - ¢>g’(Q)_1)) /¢>g‘(Q)_1) <0.5%
> Monte Carlo : target ¢ : average ¢ (n(MS) = 500) across 10 repetitions - RE (¢p) = 100 (¢p — ép) /¢

Optimised distributions evaluation
o Initial distribution : observed proportions in the selected subset of the NHANES database
o For each optimised distribution :
® D-efficiency relative to the initial distribution  © N.SN to achieve 80% power in relevance/non-relevance test
Implementationin R https://doi.org/10.5281/zenodo. 14778033
o Extension of the package PFIM6.113 based on previous work 7
o Quadrature nodes computed using the function gauss.quad() from the package statmod 28

o Projection on the constraint spac using the function [sei() from the package limSolve 2°
o Roots for NSN found using the R function uniroot() from the package stats3©

25. NAGLER & VATTER (2021) R package version 0.5 7. FAveTTE et al (2025) Journal of Pharmacokinetics and Pharmacodynamics
26. Guo et al (2024) Journal of Pharmacokinetics and Pharmacodynamics 28. GINER & SMYTH (2016) R Journal

27. Guoetal (2024) PAGE 29. R package 151

13. PFIM:CRAN package version 6.1 30. ISBN 3-900051-07-0
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N covariate combinations

Table 6 - RF - N covariate combinations Table 7 - HF - N covariate combinations
SEX BMT interval  Renal Status N (%) SEX BMTI interval HepaticStatus N (%)
Male Healthy Weight Normal 2290 (7.8) Male Healthy Weight Normal 3041(10.3)
Mild 1105 (3.8) Mild1 331(1D
Moderate 454 (15) Mild2 411(1.4)
Overweight Normal 3047 (10.4) Overweight Normal 4218 (14.3)
Mild 1616 (5.5) Mildl 552 (1.9)
Moderate 635 (2.2) Mild2 477 (1.6)
Obesity Normal 3575(122) Obesity Normal 3980 (13.5)
Mild 1099 (3.7) Mildl 682 (2.3)
Moderate 377 (1.3) Mild2 366 (1.2)
- Severe 142 (0.5) - ModerateSevere 282 (1)
Female Healthy Weight Normal 2122 (72) Female Healthy Weight Normal 3804 (12.9)
Mild 1459 (5) Mildl 244 (0.8)
Moderate 665 (2.3) Mild2 217 (0.7)
Overweight Normal 2112 (72) Overweight Normal 3859 (13.1)
Mild 1389 4.7 Mildl 275(0.9)
Moderate 705 (2.4) Mild2 134 (0.5)
Obesity Normal 4041 (137) Obesity Normal 5812 (19.8)
Mild 1659 (5.6) Mildl 513 (17)
Moderate 700 (2.4) Mild2 134 (0.5)
- Severe 217 (0.7) - ModerateSevere 77 (0.3)
Lucie Fayette
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Copula fitting - RF - Combination with Severe RF

Male BMI

CLCR

S
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CLCR
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Fig. 5 - Boxplot of the relative error (RE) of marginal

T T T T i
mean sd  Psg Proy, Posw

distributions summary statistics, compared to the

NHANES database.
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Fig. 6 - Visual predictive checks based on the
contours of the bivariate density : 99% prediction
intervals of percentile contours compared to the
contours observed in the NHANES database.

6712

PmXin France



FIM integration using GLQ vs Monte Carlo

d)(n(Q))—(ﬁ(n(Q)_l)
o GLQ: start with n(@) = 1 and stop if Ap (n(@)) = 100 IR <0.5%
o

o Monte Carlo : target ¢ : average ¢p (n(MC) = 500) across 10 repetitions - RE (¢p) = 100 %
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FIM integration using GLQ vs Monte Carlo

¢(n(Q)>_¢(n(Q)_1>
o GLQ : start with n(@ =1 and stop if Ap(n(@) = 100 =2 TRy <0.5%
s T

o Monte Carlo : target ¢ : average ¢p (n(MC) = 500) across 10 repetitions - RE (¢p) = 100 %

8_
~ 7
=l
5
SR
E 5
Q.
< N °
0 T O e 000000000
T T T T T T T T T T T T T T T T T T T T
2 3 45 6 7 8 9 10111213 14 15 1 10 2 50 100 500
n(@) n(MC)
Fig. 7 - GLQ: A p(n(@)) function of n(@) Fig. 8 - Monte Carlo: RE (¢p) function of n(M€) 10
—:0.5% chains — 1 +0.5%

o GLQ with n(?) = 5 —25 FIM evaluations vs for Monte Carlo, RE (¢p) not controlled for n™¢) = 25
Lucie Fayette 19 septembre 2025 PmX in France



HF example
Continuous segmentation
Interval Name %

e log (W) and log (%) Condition on covariate
pop pop BILI/ULN <1and AST/ULN <1 NormalHF 84
on Cl BILI/ULN < 1and AST/ULN >  MildlHF 288
_ _ 1< BILTJULN < 1.5 Mild2 HF 59
¢ Bovprrrwry = 0.05and o asT/uin = —0.38 1.5 < BILIJULN < 3 Moderate HF 12
3< BILI/ULN Severe HF (o]

® TCl, ModerateSevere HF = 0.97

Table 8 - Hepatic case study - D-criterion, D-Efficiency and Number of subjects needed (N .SN) to reach 80%
power in relevance or non-relevance tests, with the initial and optimal covariate distributions for the D-criterion

for the different sets of constraints
Initial Optimal Distributions
Distribution Without constraint With constraints
D-criterion 240.1 304.0 294.4
D-Efficiency 100 127 123
NSNg (V,SEX) 167 217 216
NSNyr (V, Obesity) 140 105 108
400 148 141

NSNnr (Cl, ModerateSevere HF)

in bold : the higher N'SN across the three covariate relationships, for respectively the significance tests and the (non-Jrelevance tests, for each

8/12

design.
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Copula fitting - HF - Combination with ModerateSevere HF
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Fig. 9 - Boxplot of the relative error (RE) of marginal
distributions summary statistics, compared to the
NHANES database.
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Fig. 10 - Visual predictive checks based on the
contours of the bivariate densities : 99% prediction
intervals of percentile contours compared to the
contours observed in the NHANES database.
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GLQ vs Monte Carlo - HF
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Fig. 12 - RE (¢p) function of n(M©) 10 chains — :

Fig. 11 - Ap (n(@)) function of n(@)  _:0.5%
+0.5%

o GLQ with n(? = 6 —216 FIM evaluations vs RE (¢p) not controlled for n(™<) = 216
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Optimal distributions - HF

Initial ‘Without constraint ‘With constraints
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Fig. 13 - Hepatic case study - Optimal proportions for the covariate distributions for the D-criterion for the
different sets of constraints
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Optimal NSN - HF

Table 9 - Hepatic case study - D-criterion, D-Efficiency and Number of subjects needed (NS N) to reach 80%
power in relevance or non-relevance tests, with the initial and optimal covariate distributions for the D-criterion
for the different sets of constraints

Initial Optimal Distributions
Distribution Without constraint With constraints

D-criterion 2401 304.0 2944
D-Efficiency 100 127 123
NSNg (V,SEX) 167 217 216
NSNnr (V, Obesity) 140 105 108
NSNnr (Cl, ModerateSevere HF) 400 148 141

in bold : the higher N S N across the three covariate relationships, for respectively the significance tests and the (non-)relevance tests, for each

design.
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