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Introduction Methods Illustration on a PK model Results Conclusion

Importance of covariates in Pharmacometrics

● Clinical phase of new drug development

Detect individual characteristics = covariates, likely to explain inter-individual variability

● Pharmacokinetics (PK) →effects on drug exposure requiring dose adjustment 1

● Non-linear mixed-effects models (NLMEM) : quantitatively describe relationship between
covariates and model parameters

● Ratio of change in the value of the parameter, for given
values of the covariate and relative to a reference value
❍ Clinically relevant : 90% confidence interval (CI) outside

equivalence interval 2

❍ Clinically non-relevant : 90% CI within equivalence interval

.● 1. FDA (2022) Guidance for Industry Population Pharmacokinetics

.● 2. PHILIPP et al. (2024) Journal of Pharmacokinetics and Pharmacodynamics
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Design optimisation

● Design optimisation : Before data collection →maximise informativeness of data to be collected
❍ FDA 1 highlights use of Clinical Trial Simulations (CTS) and optimal design

● Optimal design theory in NLMEM
❍ Based on Fisher Information Matrix (FIM) 3 4 , no analytical solution
❍ For continuous responses :

• First-order linearisation around mean of random effects →Gaussian approximation with analytical FIM 5

→Implemented in various software tools 6

● Covariates? →Literature lacks comprehensive treatment of the influence covariate distributions
❍ Considering covariates allows quantifying impact on

• CI of ratios ● Statistical power ● Number of subjects needed (NSN ) for desired power

❍ Tools handle only fixed covariate values →Discrete combinatorial explosion
→impractical for continuous covariates

❍ Considering covariates as random variables introduce another integral

● 1. FDA (2022) Guidance for Industry Population Pharmacokinetics
● 3. MENTRE et al. (1997) Biometrika
● 4. MENTRé et al. (2013) CPT : Pharmacometrics & Systems Pharmacology

● 5. BAZZOLI et al. (2009) Statistics in Medicine
● 6. NYBERG et al. (2015) British Journal of Clinical Pharmacology
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Previous work7 - Design evaluation with covariates

● Design evaluation accounting for covariate distribution : Discrete, continuous + correlations

● FIM with Monte Carlo integration over covariate distribution

● Validated via simulation study + application to Cabozantinib PK

● Predict uncertainty, power of test and NSN 7

● Applied to optimise sampling in missing data imputation study 8

● 7. FAYETTE et al. (2025) Journal of Pharmacokinetics and Pharmacodynamics ● 8. DUFLOT et al. (2025) The AAPS Journal
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Objectives

Support pharmacometrics design of future clinical trials

● Compute optimal covariate distribution

● Define NSN to demonstrate relevance (or non-relevance) of important covariate
relationships with desired power

● Develop a faster integration over covariate distribution in FIM computation

Lucie Fayette 19 septembre 2025 PmX in France 5 / 21
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Overview

1 Introduction

2 Methods

3 Illustration on a PK model

4 Results

5 Conclusion
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Non-Linear Mixed Effect Models

The jth observation yij for the ith subject :

yij = f(ξi, θi) + g(ξi, θi, σ)εij

● f , structural non-linear model ● ξi, elementary design

● Individual parameters : θi = u (µ, β, Zi, ηi)
❍ µ, typical values ❍ β, covariate effects ❍ Zi, covariate vector ❍ ηi ∼ N (0, Ω) individual random effects

● Residual error ❍ g, depending on ξi, θi + some parameters σ ❍ random variable εi ∼ N (0, Ini )

● Ψ = {µ, β, λ, Ω, σ}, P -vector of population parameters

Lucie Fayette 19 septembre 2025 PmX in France 7 / 21
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FIM definition with covariates

● Given ❍ an elementary design ξi ❍ a population parameter vector Ψ ❍ a covariate realisation zi

MF (ξi, Ψ, zi) = E
(

∂ log l(yi; ξi, Ψ, zi)
∂Ψ

∂ log l(yi; ξi, Ψ, zi)
∂ΨT

)
where l(yi; ξi, Ψ, zi) =

∫
p(yi | ηi; Ψ, zi, ξi)p(ηi; Ψ, zi)dηi

● Given ❍ a population design Ξ = {N, (ξ1, . . . , ξN )} with N subjects ❍ a distribution pZ for covariates

MF (Ξ, Ψ, pZ) =
N∑

i=1

MF (ξi, Ψ, pZ) where MF (ξi, Ψ, pZ) =
∫

MF (ξi, Ψ, z)pZ(z)dz

Lucie Fayette 19 septembre 2025 PmX in France 8 / 21
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Computing MF

(
ξi, Ψ, pCont

)
: Copula + Gauss-Legendre Quadrature

● pZ characterisation :
❍ D discrete covariates, each with Qδ, δ = 1, . . . , D categories

→ZDis,i ∼ distribution with n(QD) =
∏D

δ=1 Qδ values : zDis,d with probability pDis,d, d = 1, . . . , n(QD)

❍ ∀ zDis,d, we denote pCont|zDis,d
the distribution of ZCont,i conditionally to zDis,d

MF (ξi, Ψ, pZ) =
n(QD)∑

d=1

pDis,d MF (ξi, Ψ, zDis,d, pCont|zDis,d
)

● Distribution pCont|zDis,d
→Continuous covariate modelling with copula 7 9

❍ Rosenblatt transform 10 : TCont|zDis,d
(ZCont) ∼ U

(
[0; 1]C

)
MF

(
ξi, Ψ, zDis,d, pCont|zDis,d

)
=

∫
[0;1]C

MF

(
ξi, Ψ, zDis,d, T −1

Cont|zDis,d
(u1, . . . , uC)

)
du1 . . . duC

● Gauss–Legendre Quadrature (GLQ) 11 with n(Q) nodes

MF

(
ξi, Ψ, zDis,d, pCont|zDis,d

)
≈

n(Q)∑
q1=1

· · ·
n(Q)∑
qC =1

wq1 . . . wqC MF

(
ξ, Ψ, zDis,d, T −1

Cont|zDis,d
(vq1 , . . . , vqC )

)
● 7. FAYETTE et al. (2025) Journal of Pharmacokinetics and Pharmacodynamics
● 9. ZWEP et al. (2024) Clinical Pharmacology & Therapeutics

● 10. ROSENBLATT (1952) The Annals of Mathematical Statistics
● 11. GOLUB & WELSCH (1969) Mathematics of Computation
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Covariate distribution optimisation

Z1 Z2 Z3

● Discrete covariates →Optimise the proportion of each category

● Continuous covariates →Segment their domains into intervals, chosen for their clinical meaning
→Optimise proportion of each interval in the trial population
❍ Preserves the continuous nature of covariates in the FIM computation
❍ Discrete segmentation →Reduces dimensionality + Facilitates subject inclusion in clinical setting

● Combining categories × intervals →L possible distributions for covariate
vector Z

MF (ξi, Ψ, pZ(x)) =
L∑

l=1

xl MF

(
ξi, Ψ, pZ,l

)
where x = (xl)l=1,...,L the vector of proportions of subjects in the trial population associated

with covariate distributions pZ,l

Lucie Fayette 19 septembre 2025 PmX in France 10 / 21
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Optimisation with Projected Gradient Descent Algorithm (PGD)

● D-criterion ϕD(Ξ, Ψ, pZ(x)) =
(
det (MF (Ξ, Ψ, pZ(x)))

)1/P
with P the size of Ψ

● Constraints →Q the constraint space
❍ x : vector of proportions : ● ∀l, xl ∈ [0; 1] ●

∑
xl = 1

❍ Bound constraints

● Projected Gradient Descent Algorithm (PGD)

xk+1 = PQ

(
xk + αk∇ϕD (Ξ, Ψ, pZ(xk))

)
with αk ∈ [0; ∞] gradient step-size at the kth iteration, ∇ϕD gradient of ϕD with respect to x 12 , PQ projection onQ

● Predicted SE : SE(Ξ, Ψ, pZ(x))β

❍ Derive the required SE⋆ to reach a given power in relevance/non-relevance tests

❍ Deduce NSNR and NSNNR NSN(Ξ, Ψ, pZ(x))β = N

(
SE(Ξ, Ψ, pZ(x))β

SE⋆

)2

● Implementation in R using an extension of PFIM6.1. 13

.● 12. FAYETTE et al. (2023) The AAPS Journal

.● 13. PFIM : CRAN package version 6.1
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PK model with continuous covariate defining Renal function

● 1 compartment - IV bolus - linear elimination : f(ξi = (ti, Dosei) , θi) = Dosei
Vi

e
− Cli

Vi
ti

● Combined error : y = f + (a + bf)
● Covariate effects : log θi = log θpop + βθ,ZZi + ηθ,i

❍ SEX and log
(

BMIi
BMIpop

)
on V ❍ log

(
CLCRi

CLCRpop

)
on Cl

Table 1 – Population PK parameter values

Parameter µCl (L/h) µV (L) ωCl ωV a (mg/L) b βV,Sex βV,BMI βCl,CLCR

Value 0.43 7.13 0.24 0.30 2.39 0.08 -0.35 0.50 0.27

● Design ❍ 250 mg of drug at time 0 ❍ 3 samples : 1, 4 and 12 hours post-dose

Lucie Fayette 19 septembre 2025 PmX in France 13 / 21
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Covariate effects

Table 2 – Continuous segmentation

Condition on covariate Interval Name
18.5 ≤ BMI < 25 kg/m2 Healthy Weight
25 ≤ BMI < 30 kg/m2 Overweight

BMI ≥ 30 kg/m2 Obesity
CLCR ≥ 90 mL/min Normal RF

60 ≤ CLCR < 90 mL/min Mild RF
30 ≤ CLCR < 60 mL/min Moderate RF

CLCR < 30 mL/min Severe RF

Table 3 – Ratio values

rV, Female rV, Obesity rCl, Severe RF

0.70 1.14 0.70

20
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Fig. 1 – Concentration evolution according to the fixed effects
and univariate covariate effects

● Reference interval [0.80; 1.25]
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Initial covariate distribution and optimisation

● Initial covariate distribution : NHANES 14 - 2009 to 2020 →29 409 covariate vectors
❍ Age between 18 and 80 years old ❍ Body Mass Index (BMI) ≥ 18.5 kg/m2

❍ No missing data

Table 4 – Covariate data summary from the NHANES database

Continuous covariates
Covariate mean (sd) median [min ; max]

BMI (kg/m2) 29.5 (7.0) 28.2 [18.5 ; 92.3]
CLCR (ml/min) 99.0 (35.6) 97.3 [4.1 ; 342.9]

Discrete covariates
Covariate Category Name %

SEX Male 48.8
Female 51.2

Continuous segmentation
Condition on covariate Interval Name %

18.5 ≤ BMI < 25 kg/m2 Healthy Weight 27.9
25 ≤ BMI < 30 kg/m2 Overweight 32.7

BMI ≥ 30 kg/m2 Obesity 39.3
CLCR ≥ 90 mL/min Normal RF 58.4

60 ≤ CLCR < 90 mL/min Mild RF 28.3
30 ≤ CLCR < 60 mL/min Moderate RF 12.0

CLCR < 30 mL/min Severe RF 1.2

● Few Severe RF →combination SEX only →L = 20

● 2 constraints settings : ❍ Without Constraint : proportion requirements : within [0, 1] and sum to 1

2 constraints settings : ❍ With constraints : ● Each continuous interval should represent at least 5%

2 constraints settings : ❍ With constraints : ● Severe RF not more than 10%

.● 14. https://wwwn.cdc.gov/nchs/nhanes/default.aspx
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Copula fit diagnostic for combinations including Severe RF
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Fig. 2 – Visual predictive checks based on the contours of the bivariate density : 99% prediction intervals of
percentile contours compared to the contours observed in the NHANES database.
Percentile contours : 5th : , ● 50th : , ● 95th : , ●
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Optimal distributions
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Fig. 3 – Renal case study - Optimal proportions for the covariate distributions for the D-criterion for the different
sets of constraints
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Optimal NSN

Table 5 – Renal case study - Number of subjects needed (NSN ) to reach 80% power in relevance or
non-relevance tests, with the initial and optimal covariate distributions for the D-criterion for the different sets of
constraints

Initial Optimal Distributions
Distribution Without constraint With constraints

NSNR

(
V , Female

)
167 197 196

NSNNR

(
V , Obesity

)
143 118 107

NSNR

(
Cl, Severe RF

)
602 143 230

→NSN decreased by more than 60%
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Optimal NSN as a function of covariate effect
● Sensitivity analysis

❍ Influence of IIV : ’Normal IIV’ scenario + ’High IIV’ scenario, in which ωCl and ωV were doubled
❍ Influence of covariate effect : varying βCl,CLCR, resulting in rCl, Severe RF ranging from 0.40 to 0.75
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Fig. 4 – Renal case study - NSNR

(
Cl, CLCR (Severe RF)

)
to reach 80% power in relevance test for the two IIV

scenarios and as a function of rCl, Severe RF from 0.40 to 0.75
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Conclusion
● New way of integrating the FIM over the covariate distribution : copula modelling + GLQ

→Faster than Monte Carlo
● Before a study, given a model, a design and a prior covariate distribution :

1 Compute expected power for relevance test on important covariate effects
2 Compute NSN to reach desired confidence level
3 Optimise covariate distribution to reduce NSN

● Dimensionality limitation : number of covariates + number of nodes →Remains more efficient than CTS

Perspectives
● Joint optimisation of covariates + elementary designs
● Full FIM computation 15 16 17 →Extension to non-continuous responses
● Model + parameters + covariate distribution assumed to be known

→Extend to a robust approach 18 19 20 21 22 12

● Implementation in a future version of PFIM7 23

● Manuscript in revision in Computational Statistics and Data Analysis
❍ Preprint : https://www.medrxiv.org/content/medrxiv/early/2025/02/02/2025.01.31.25321452.full.pdf
❍ Code : https://doi.org/10.5281/zenodo.14778034

● 15. RIVIERE et al. (2016) Biostatistics
● 16. NGUYEN & MENTRé (2014) Computational Statistics & Data Analysis
● 17. UECKERT & MENTRé (2017) Computational Statistics & Data Analysis
● 18. DODDS et al. (2005) Journal of Pharmacokinetics and Pharmacodynamics
● 19. FOO et al. (2012) Journal of Biopharmaceutical Statistics

● 20. LOINGEVILLE et al. (2020) Journal of Biopharmaceutical Statistics
● 21. SEURAT et al. (2020) Statistical Methods in Medical Research
● 22. LESTINI et al. (2015) Pharmaceutical Research
● 12. FAYETTE et al. (2023) The AAPS Journal
● 23. R package version 7.0 , https ://github.com/packagePFIM/PFIM
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Computing FIM with covariates
● pZ characterisation :

❍ D discrete covariates, each with Qδ, δ = 1, . . . , D categories
→ZDis,i ∼ distribution with n(QD) =

∏D

δ=1 Qδ values : zDis,d with probability pDis,d, d = 1, . . . , n(QD)

❍ ∀ zDis,d, we denote pCont|zDis,d
the distribution of ZCont,i conditionally to zDis,d

MF (ξi, Ψ, pZ) =
n(QD)∑

d=1

pDis,d MF (ξi, Ψ, zDis,d, pCont|zDis,d
)

● Distribution pCont|zDis,d
→Continuous covariate modelling with copula

❍ Rosenblatt transform 10 : TCont|zDis,d
(ZCont) ∼ U

(
[0; 1]C

)
MF

(
ξi, Ψ, zDis,d, pCont|zDis,d

)
=

∫
[0;1]C

MF

(
ξi, Ψ, zDis,d, T −1

Cont|zDis,d
(u1, . . . , uC)

)
du1 . . . duC

● Gauss–Legendre Quadrature (GLQ) 11 with n(Q) nodes

MF

(
ξi, Ψ, zDis,d, pCont|zDis,d

)
≈

n(Q)∑
q1=1

· · ·
n(Q)∑
qC =1

wq1 . . . wqC MF

(
ξ, Ψ, zDis,d, T −1

Cont|zDis,d
(vq1 , . . . , vqC )

)
.● 10. ROSENBLATT (1952) The Annals of Mathematical Statistics
.● 11. GOLUB & WELSCH (1969) Mathematics of Computation
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Ratios for the evaluation of covariate relationships

● Significance test : are covariate effects different from 0? →Expected power from FIM 24 7

● Relevance and non-relevance test : assess the magnitude of an effect

● Ratio of change in primary parameters when covariate values change relative to a reference value
→Uncertainty derived from the SE on the covariate effect + power of tests7

❍ Clinically relevant : if the 90% CI is completely outside an equivalence interval [Rinf ; Rsup]
❍ Clinically non-relevant if entirely within

● For a log-normally distributed parameter with an additive covariate relationship on the log scale
❍ If the covariate is binary : rl,c = eβl,c

❍ If continuous : rl,c(P X) = eβl,c(P X−P 50) for given percentile P X , with P 50 median of covariate distribution

● Influence of belonging to an interval subset involving several covariates
Ratio : expected value of the ratio function, conditional on the associated covariate sub-vector following the
mixture distribution corresponding to the interval subset of interest :

rθ,LR =
1∑

l′∈LR xl′

∑
l∈LR

xl

∫
r(β, z)pZ,l(z)dz where LR the subset of covariate distributions defined over

the interval subset
→Uncertainty estimated using the Delta Method + tests based on the resulting Gaussian approximation

.● 24. RETOUT et al. (2007) Statistics in Medicine

.● 7. FAYETTE et al. (2025) Journal of Pharmacokinetics and Pharmacodynamics
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● Copula fitting
❍ Vine copula fitted using the R package rvinecopulib0.6.3.1.1 25

❍ Fit evaluation : simulation-based strategy 26 using 100 replicates + Diagnostics plots with pmxcopula 27

● Quadrature settings

❍ Number of nodes : start with n(Q) = 1, stop if ∆D(n(Q)) = 100
(

ϕ
(n(Q))
D − ϕ

(n(Q)−1)
D

)
/ϕ

(n(Q)−1)
D ≤ 0.5%

❍ Monte Carlo : target ϕ̄D : average ϕD

(
n(MC) = 500

)
across 10 repetitions - RE (ϕD) = 100

(
ϕD − ϕ̄D

)
/ϕ̄D

● Optimised distributions evaluation
❍ Initial distribution : observed proportions in the selected subset of the NHANES database
❍ For each optimised distribution :

• D-efficiency relative to the initial distribution ❍ NSN to achieve 80% power in relevance/non-relevance test

● Implementation in R https://doi.org/10.5281/zenodo.14778033
❍ Extension of the package PFIM6.1 13 based on previous work 7

❍ Quadrature nodes computed using the function gauss.quad() from the package statmod 28

❍ Projection on the constraint spac using the function lsei() from the package limSolve 29

❍ Roots for NSN found using the R function uniroot() from the package stats30

● 25. NAGLER & VATTER (2021) R package version 0.5
● 26. GUO et al. (2024) Journal of Pharmacokinetics and Pharmacodynamics
● 27. GUO et al. (2024) PAGE
● 13. PFIM : CRAN package version 6.1

● 7. FAYETTE et al. (2025) Journal of Pharmacokinetics and Pharmacodynamics
● 28. GINER & SMYTH (2016) R Journal
● 29. R package 1.5.1
● 30. ISBN 3-900051-07-0
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N covariate combinations

Table 6 – RF - N covariate combinations

SEX BMI interval Renal Status N (%)
Male Healthy Weight Normal 2 290 (7.8)

Mild 1 105 (3.8)
Moderate 454 (1.5)

Overweight Normal 3 047 (10.4)
Mild 1 616 (5.5)

Moderate 635 (2.2)
Obesity Normal 3 575 (12.2)

Mild 1099 (3.7)
Moderate 377 (1.3)

- Severe 142 (0.5)
Female Healthy Weight Normal 2 122 (7.2)

Mild 1 459 (5)
Moderate 665 (2.3)

Overweight Normal 2 112 (7.2)
Mild 1 389 (4.7)

Moderate 705 (2.4)
Obesity Normal 4041 (13.7)

Mild 1 659 (5.6)
Moderate 700 (2.4)

- Severe 217 (0.7)

Table 7 – HF - N covariate combinations

SEX BMI interval HepaticStatus N (%)
Male Healthy Weight Normal 3041 (10.3)

Mild1 331 (1.1)
Mild2 411 (1.4)

Overweight Normal 4218 (14.3)
Mild1 552 (1.9)
Mild2 477 (1.6)

Obesity Normal 3980 (13.5)
Mild1 682 (2.3)
Mild2 366 (1.2)

- ModerateSevere 282 (1)
Female Healthy Weight Normal 3804 (12.9)

Mild1 244 (0.8)
Mild2 217 (0.7)

Overweight Normal 3859 (13.1)
Mild1 275 (0.9)
Mild2 134 (0.5)

Obesity Normal 5812 (19.8)
Mild1 513 (1.7)
Mild2 134 (0.5)

- ModerateSevere 77 (0.3)
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Back Up

Copula fitting - RF - Combination with Severe RF
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Fig. 5 – Boxplot of the relative error (RE) of marginal
distributions summary statistics, compared to the
NHANES database.
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Fig. 6 – Visual predictive checks based on the
contours of the bivariate density : 99% prediction
intervals of percentile contours compared to the
contours observed in the NHANES database.
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Back Up

FIM integration using GLQ vs Monte Carlo

● GLQ : start with n(Q) = 1 and stop if ∆D(n(Q)) = 100
ϕ

(n(Q))
D

−ϕ
(n(Q)−1)
D

ϕ
(n(Q)−1)
D

≤ 0.5%

● Monte Carlo : target ϕ̄D : average ϕD

(
n(MC) = 500

)
across 10 repetitions - RE (ϕD) = 100 ϕD−ϕ̄D

ϕ̄D
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Fig. 7 – GLQ : ∆D(n(Q)) function of n(Q)
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Fig. 8 – Monte Carlo : RE (ϕD) function of n(MC), 10
chains : ±0.5%

● GLQ with n(Q) = 5 →25 FIM evaluations vs for Monte Carlo, RE (ϕD) not controlled for n(MC) = 25
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Fig. 7 – GLQ : ∆D(n(Q)) function of n(Q)
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Fig. 8 – Monte Carlo : RE (ϕD) function of n(MC), 10
chains : ±0.5%

● GLQ with n(Q) = 5 →25 FIM evaluations vs for Monte Carlo, RE (ϕD) not controlled for n(MC) = 25
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HF example

● log
(

(BILI/ULN)i
(BILI/ULN)pop

)
and log

(
(AST/ULN)i

(AST/ULN)pop

)
on Cl

● βCl,BILI/ULN = 0.05 and βCl,AST/ULN = −0.38
● rCl, ModerateSevere HF = 0.97

Continuous segmentation
Condition on covariate Interval Name %

BILI/ULN ≤ 1 and AST/ULN ≤ 1 Normal HF 84
BILI/ULN ≤ 1 and AST/ULN > Mild1 HF 28.8

1 < BILI/ULN ≤ 1.5 Mild2 HF 5.9
1.5 < BILI/ULN ≤ 3 Moderate HF 1.2

3 < BILI/ULN Severe HF 0

Table 8 – Hepatic case study - D-criterion, D-Efficiency and Number of subjects needed (NSN ) to reach 80%
power in relevance or non-relevance tests, with the initial and optimal covariate distributions for the D-criterion
for the different sets of constraints

Initial Optimal Distributions
Distribution Without constraint With constraints

D-criterion 240.1 304.0 294.4
D-Efficiency 1.00 1.27 1.23

NSNR (V, SEX) 167 217 216
NSNNR (V, Obesity) 140 105 108

NSNNR (Cl, ModerateSevere HF) 400 148 141
in bold : the higher NSN across the three covariate relationships, for respectively the significance tests and the (non-)relevance tests, for each
design.
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Copula fitting - HF - Combination with ModerateSevere HF
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Fig. 9 – Boxplot of the relative error (RE) of marginal
distributions summary statistics, compared to the
NHANES database.
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Fig. 10 – Visual predictive checks based on the
contours of the bivariate densities : 99% prediction
intervals of percentile contours compared to the
contours observed in the NHANES database.
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GLQ vs Monte Carlo - HF
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Fig. 11 – ∆D(n(Q)) function of n(Q) : 0.5%
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Fig. 12 – RE (ϕD) function of n(MC), 10 chains :
±0.5%

● GLQ with n(Q) = 6 →216 FIM evaluations vs RE (ϕD) not controlled for n(MC) = 216
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Optimal distributions - HF
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Fig. 13 – Hepatic case study - Optimal proportions for the covariate distributions for the D-criterion for the
different sets of constraints
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Optimal NSN - HF

Table 9 – Hepatic case study - D-criterion, D-Efficiency and Number of subjects needed (NSN ) to reach 80%
power in relevance or non-relevance tests, with the initial and optimal covariate distributions for the D-criterion
for the different sets of constraints

Initial Optimal Distributions
Distribution Without constraint With constraints

D-criterion 240.1 304.0 294.4
D-Efficiency 1.00 1.27 1.23

NSNR (V, SEX) 167 217 216
NSNNR (V, Obesity) 140 105 108

NSNNR (Cl, ModerateSevere HF) 400 148 141

in bold : the higher NSN across the three covariate relationships, for respectively the significance tests and the (non-)relevance tests, for each
design.
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