

Covariate clinical relevance determination in population pharmacokinetic analyses: comparison using full model, FREM, SCM+, LASSO & GA approaches

Team BIPID - IAME laboratory, UMR 1137, INSERM and Université de Paris Institut Roche

Morgane PHILIPP^{1,2}

Supervisors: France MENTRE¹, Sylvie RETOUT^{2,3} and Simon BUATOIS³

¹Université Paris Cité, INSERM, IAME, UMR 1137, Paris, France

²Institut Roche, Boulogne-Billancourt, France

³Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland

Introduction

- Identify and quantify the sources of variability between individuals
- Ultimate goal
 - Dose adjustment in a subpopulation of interest to avoid risk of underexposed or overexposed subpopulation
 - Predictions (interpolation or extrapolation) under new experimental conditions

- Identify and quantify the sources of variability between individuals
- Ultimate goal
 - Dose adjustment in a subpopulation of interest to avoid risk of underexposed or overexposed subpopulation
 - Predictions (interpolation or extrapolation) under new experimental conditions

- Identify and quantify the sources of variability between individuals
- Ultimate goal
 - Dose adjustment in a subpopulation of interest to avoid risk of underexposed or overexposed subpopulation
 - Predictions (interpolation or extrapolation) under new experimental conditions

- Identify and quantify the sources of variability between individuals
- Ultimate goal
 - Dose adjustment in a subpopulation of interest to avoid risk of underexposed or overexposed subpopulation
 - Predictions (interpolation or extrapolation) under new experimental conditions

- Identify and quantify the sources of variability between individuals
- Ultimate goal
 - Dose adjustment in a subpopulation of interest to avoid risk of underexposed or overexposed subpopulation
 - Predictions (interpolation or extrapolation) under new experimental conditions

Health authority guidelines \rightarrow no strong recommendations on the use of any particular covariate modeling method

U.S FDA, Population Pharmacokinetics - Guidance for Industry, 2022

"Model development issues can be addressed through several valid approaches, each with its own benefits and drawbacks. For example, **covariate analysis can be** performed based on several approaches or their possible combinations (e.g., stepwise covariate analysis, full covariate model approach, the Lasso) (Wählby, Jonsson, and Karlsson 2002; Gastonguay 2004; Ribbing et al. 2007). In such cases, sponsors should justify why a particular approach was used."

8

Graphics used to support the decision on the clinical relevance of covariate effects on exposure

https://github.com/pharmetheus/PMXForest

https://github.com/pharmetheus/PMXForest

- Relevant \rightarrow R
- Not relevant
 - Significant \rightarrow NRS
 - Non-significant \rightarrow NRNS

- Relevant \rightarrow R
- Not relevant
 - Significant \rightarrow NRS

- Non-significant \rightarrow NRNS
- Insufficient information
 - Significant \rightarrow IIS
 - Non-significant \rightarrow IINS

- Relevant \rightarrow R
- Not relevant
 - Significant \rightarrow NRS

- Non-significant \rightarrow NRNS
- Insufficient information
 - Significant \rightarrow IIS
 - Non-significant \rightarrow IINS

→ Precise and accurate estimation of covariate ratios and their associated uncertainty is critical

Covariates model building approaches comparison

 Previous research focused on comparing the performance of covariate detection and the accuracy of their effect

Approaches compared	Metrics of comparison	Reference
Stepwise generalized additive models with backward elimination vs SCM	Covariate model correctness, covariate effects estimation accuracy, predictive performances and computational speed	Wählby et al. AAPS PharmSci. 2002
LASSO vs SCM	Predictive performances and computational speed	Ribbing et al. J Pharmacokinet Pharmacodyn. 2007
Simplified SCM vs FM vs Prior-Adjusted Covariate Selection	Performances (selection of the true covariate)	Chasseloup et al. J Pharmacokinet Pharmacodyn. 2020
Random forest vs neural network vs support vector regression vs SCM vs COSSAC vs LASSO	Performances (ROC curves, F1 scores), computational speed	Sibieude et al. J Pharmacokinet Pharmacodyn. 2021
COSSAC vs SCM	Covariate selection, OFV, computational speed	Aryal et al. CPT: Pharmacomet Syst Pharmacol. 2021
SAMBA vs COSSAC vs SCM	Covariate selection, OFV, computational speed	Prague et al. CPT: Pharmacomet Syst Pharmacol. 2021
FREM vs FM	Covariate effects estimation accuracy	Yngman et al. CPT: Pharmacomet Syst Pharmacol. 2022
SCM vs SCM+	Efficiency (number of runs and function evaluations), relevance (number of relevant covariate selected)	Svensson et al. CPT: Pharmacomet Syst Pharmacol. 2022
FREM vs SCM	Power to detect the true covariate, precision and accuracy of the covariate coefficient	Amann et al. J Pharmacokinet Pharmacodyn. 2023
GA vs SCM	Covariate selection, OFV, computational speed	Ronchi et al. J Pharmacokinet Pharmacodyn. 2023
GA vs Gaussian process vs random forest vs gradient boosted random tree vs particle swarm optimization vs forward addition/backward elimination	Robustness (comparison of the optimal model found with that obtained by an exhaustive search), efficiency (number of models examined before finding the optimal model), calculation speed	Xinnong Li et al. J Pharmacokinet Pharmacodyn. 2024

Covariates model building approaches comparison

 Previous research focused on comparing the performance of covariate detection and the accuracy of their effect

Lack of assessment of:

- Accuracy of covariate ratios with their associated uncertainty
- Correctness of the CCR evaluation
- Comparison of the "stepwise covariate analysis, full covariate model approach, the Lasso" (U.S. FDA, Population Pharmacokinetics Guidance for Industry, 2022)

- Our previous investigations compared the accuracy of CCR assessment of SCM, SCM+ & Full Model
 - Simulation study with 200 simulated datasets inspired by a real population PK analysis of Emicizumab [1,2,3]
 - All approaches provided satisfactory results close to those of the reference model (i.e. the true model used to simulate the data)

Journal of Pharmacokinetics and Pharmacodynamics https://doi.org/10.1007/s10928-024-09911-0

ORIGINAL PAPER

Impact of covariate model building methods on their clinical relevance evaluation in population pharmacokinetic analyses: comparison of the full model, stepwise covariate model (SCM) and SCM+ approaches

Morgane Philipp^{1,2} · Simon Buatois³ · Sylvie Retout^{2,3} · France Mentré¹

Received: 23 November 2023 / Accepted: 20 February 2024 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Aim of this work

me

- Our previous investigations compared the accuracy of CCR assessment of SCM, SCM+ & Full Model
 - Simulation study with 200 simulated datasets inspired by a real population PK analysis of Emicizumab [1,2,3]
 - All approaches provided satisfactory results close to those of the reference model (i.e. the true model used to simulate the data)

Journal of Pharmacokinetics and Pharmacodynamics https://doi.org/10.1007/s10928-024-09911-0

ORIGINAL PAPER

Impact of covariate model building methods on their clinical relevance evaluation in population pharmacokinetic analyses: comparison of the full model, stepwise covariate model (SCM) and SCM+ approaches

Morgane Philipp^{1,2} · Simon Buatois³ · Sylvie Retout^{2,3} · France Mentré¹

Received: 23 November 2023 / Accepted: 20 February 2024 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

 \rightarrow Investigate 3 alternative approaches FREM [4], LASSO [5] & GA [6] and compare the CCR determination results with those obtained by FM [7,8], SCM+ [9] & the reference model in a proof of concept study using a simulated dataset from the previous work

Retout et al. Clin Pharmacokinet. 2020; [2] Oldenburg et al. N Engl J Med. 2017; [3] Mahlangu et al. N Engl J Med. 2018; [4] Yngman et al. CPT: Pharmacomet Syst Pharmacol. 2022;
Ribbing et al. J Pharmacokinet Pharmacodyn. 2007; [6] Ronchi et al. J Pharmacokinet Pharmacodyn. 2023; [7] Gastonguay. 20th PAGE meeting. 2011; [8] Xu et al. Br J Clin Pharmacol. 2018;
Svensson et al. CPT: Pharmacomet Syst Pharmacol. 2022

Methods

Design [1,2] N = 383 with rich (1 phase I/II trial) or sparse (4 phase III trials with a peak and trough strategy) PK sampling scheme

Error model [1,2] Combined (a and b) → with a the additive (fixed) and b the proportional term

Design [1,2] N = 383 with rich (1 phase I/II trial) or sparse (4 phase III trials with a peak and trough

strategy) PK sampling scheme

Error model [1,2] Combined (a and b) → with a the additive (fixed) and b the proportional term **Covariate models [1,2]** Body weight (BW), age (AGE), albumin (ALB), black (BLK) race

$$\begin{array}{l} \textbf{Base model} \\ \mu_{L/F_{i}} = \mu_{CL/F} \times \left(\frac{BW_{i}}{70}\right)^{\beta_{CL/F,BW}} \times e^{\eta_{CL/F,i}} \\ \nu_{F_{i}} = \mu_{V/F} \times \left(\frac{BW_{i}}{70}\right)^{\beta_{V/F,BW}} \times e^{\eta_{V/F,i}} \\ \nu_{F_{i}} = \mu_{V/F} \times \left(\frac{BW_{i}}{70}\right)^{\beta_{V/F,BW}} \times e^{\eta_{V/F,i}} \\ \nu_{F_{i}} = \mu_{KA} \times e^{\eta_{KA,i}} \\ \nu_{F_{i}} = \mu_{KA} \times e^{\eta_{KA,i}} \\ \end{array}$$

 \rightarrow with μ the fixed effects and $\eta_i \sim N(0,\Omega)$ the between subject random-effects of individual i, Ω being the variance-covariance matrix, with $\beta_{par,cov}$ the effect of a covariate (cov) on a parameter (par)

+

Design [1,2] N = 383 with rich (1 phase I/II trial) or sparse (4 phase III trials with a peak and trough strategy) PK sampling scheme

Error model [1,2] Combined (a and b) → with a the additive (fixed) and b the proportional term

Covariate models [1,2] Body weight (BW), age (AGE), albumin (ALB), black (BLK) race

$$\begin{array}{l} \textbf{Base model} \\ L/F_{i} = \mu_{CL/F} \times \left(\frac{BW_{i}}{70}\right)^{\beta_{CL/F,BW}} \times e^{\eta_{CL/F,i}} \\ /F_{i} = \mu_{V/F} \times \left(\frac{BW_{i}}{70}\right)^{\beta_{V/F,BW}} \times e^{\eta_{V/F,i}} \\ A_{i} = \mu_{KA} \times e^{\eta_{KA,i}} \end{array} \\ \begin{array}{l} \textbf{CL/F_{i}} = \mu_{CL/F} \times \left(\frac{BW_{i}}{70}\right)^{\beta_{CL/F,BW}} \times \left(\frac{ALB_{i}}{30}\right)^{\beta_{CL/F,ALB}} \times e^{\eta_{CL/F,i}} \\ \times \left(\frac{ALB_{i}}{45}\right)^{\beta_{CL/F,ALB}} \times e^{\eta_{CL/F,i}} \\ \mathbb{V}/F_{i} = \mu_{V/F} \times \left(\frac{BW_{i}}{70}\right)^{\beta_{V/F,BW}} \times \left(\frac{AGE_{i}}{30}\right)^{\beta_{V/F,AGE}} \times \left(1 + \beta_{V/F,BLK} \times 1_{RACE_{i}=BLK}\right) \times e^{\eta_{V/F,i}} \\ \mathbb{K}A_{i} = \mu_{KA} \times e^{\eta_{KA,i}} \end{array}$$

 \rightarrow with μ the fixed effects and $\eta_i \sim N(0,\Omega)$ the between subject random-effects of individual i, Ω being the variance-covariance matrix, with $\beta_{par,cov}$ the effect of a covariate (cov) on a parameter (par)

Data simulation

1 dataset simulated with the Base model & Covariate model

+

Design [1,2] N = 383 with rich (1 phase I/II trial) or sparse (4 phase III trials with a peak and trough strategy) PK sampling scheme

Error model [1,2] Combined (a and b) → with a the additive (fixed) and b the proportional term

Covariate models [1,2] Body weight (BW), age (AGE), albumin (ALB), black (BLK) race

 $\begin{array}{c} \textbf{Base model} \\ CL/F_i = \mu_{CL/F} \times \left(\frac{BW_i}{70}\right)^{\beta_{CL/F,BW}} \times e^{\eta_{CL/F,i}} \\ \textbf{+} V/F_i = \mu_{V/F} \times \left(\frac{BW_i}{70}\right)^{\beta_{V/F,BW}} \times e^{\eta_{V/F,i}} \\ KA_i = \mu_{KA} \times e^{\eta_{KA,i}} \end{array} \\ \begin{array}{c} \textbf{CL/F_i = \mu_{CL/F} \times \left(\frac{BW_i}{70}\right)^{\beta_{V/F,BW}} \times \left(\frac{AGE_i}{30}\right)^{\beta_{CL/F,ACE}} \times \left(\frac{ALB_i}{45}\right)^{\beta_{CL/F,ALB}} \times e^{\eta_{CL/F,i}} \\ V/F_i = \mu_{V/F} \times \left(\frac{BW_i}{70}\right)^{\beta_{V/F,BW}} \times \left(\frac{AGE_i}{30}\right)^{\beta_{V/F,ACE}} \times (1 + \beta_{V/F,BLK} \times 1_{RACE_i = BLK}) \times e^{\eta_{V/F,i}} \\ KA_i = \mu_{KA} \times e^{\eta_{KA,i}} \end{array}$

 \rightarrow with μ the fixed effects and $\eta_i \sim N(0,\Omega)$ the between subject random-effects of individual i, Ω being the variance-covariance matrix, with $\beta_{par.cov}$ the effect of a covariate (cov) on a parameter (par)

Data simulation

1 dataset simulated with the Base model & Covariate model

Parameter estimation

Software: NONMEM 7.4 Estimation algorithm: FOCEi SE: derived from the covariance matrix computed as R⁻¹SR⁻¹ (R: hessian matrix, S: cross-product gradient matrix)

Design [1,2] N = 383 with rich (1 phase I/II trial) or sparse (4 phase III trials with a peak and trough strategy) PK sampling scheme

Error model [1,2] Combined (a and b) → with a the additive (fixed) and b the proportional term

Covariate models [1,2] Body weight (BW), age (AGE), albumin (ALB), black (BLK) race

 \rightarrow with μ the fixed effects and $\eta_i \sim N(0,\Omega)$ the between subject random-effects of individual i, Ω being the variance-covariance matrix, with $\beta_{par.cov}$ the effect of a covariate (cov) on a parameter (par)

Data simulation

1 dataset simulated with the Base model & Covariate model

Parameter estimation

Software: NONMEM 7.4 Estimation algorithm: FOCEi SE: derived from the covariance matrix computed as R⁻¹SR⁻¹ (R: hessian matrix, S: cross-product gradient matrix)

Reference model fitting

Software: PsN 5.3.2 Base model & Covariate model

C

K

+

Covariate modeling - 2 covariate sets

Prespecified covariate set (14 relationships, 18 β_{parcov}) & Saturated covariate set (21 relationships, 27 β_{parcov})

Continuous covariates, med [min - max]	CL/F	V/F	КА
Body Weight (BW, kg), 69.1 [9.50-156]	B, C	B, C	
Age (AGE, years), 30.0 [1.22 - 77.00]	с	с	
Albumine (ALB, g/L), 45.0 [33.0–56.6]	с		
Aspartate aminotransferase (AST, U/L), 23.0 [11.0–91.0]			
Bilirubin (BILI, µmol/L), 9.0 [0.33–46.0]			
Categorical covariates: category, N [%]	CL/F	V/F	КА
Status: Non-inhibitor, 195 [50%] / FVIII inhibitor (INH), 194 [50%]			
Race : White, 244 [63%] / Black (BLK) 31 [8%] / Asian (ASN), 89 [23%] / Other (OTH), 25 [6%]		с	

 \rightarrow **B**, **C**: covariate effect simulated for the **Based** & the **Covariate model**, respectively

 \rightarrow P, S: covariate effect tested on the parameter considering the Prespecified or the Saturated covariate set

Covariate modeling - 2 covariate sets

Prespecified covariate set (14 relationships, 18 β_{parcov}) & Saturated covariate set (21 relationships, 27 β_{parcov})

Continuous covariates, med [min - max]	CL/F	V/F	КА
Body Weight (BW, kg), 69.1 [9.50–156]	B, C, P	В, С, Р	
Age (AGE, years), 30.0 [1.22 - 77.00]	С, Р	С, Р	Р
Albumine (ALB, g/L), 45.0 [33.0–56.6]	С, Р	Ρ	
Aspartate aminotransferase (AST, U/L), 23.0 [11.0–91.0]	Ρ		
Bilirubin (BILI, μmol/L), 9.0 [0.33–46.0]	Ρ		
Categorical covariates: category, N [%]	CL/F	V/F	КА
Status: Non-inhibitor, 195 [50%] / FVIII inhibitor (INH), 194 [50%]	Ρ	P	Ρ
Race : White, 244 [63%] / Black (BLK) 31 [8%] / Asian (ASN), 89 [23%] / Other (OTH), 25 [6%]	Ρ	С, Р	

 \rightarrow **B**, **C**: covariate effect simulated for the **Based** & the **Covariate model**, respectively

 \rightarrow P, S: covariate effect tested on the parameter considering the Prespecified or the Saturated covariate set

Covariate modeling - 2 covariate sets

Prespecified covariate set (14 relationships, 18 $\beta_{par,cov}$) & Saturated covariate set (21 relationships, 27 $\beta_{par,cov}$)

Continuous covariates, med [min - max]	CL/F	V/F	КА
Body Weight (BW, kg), 69.1 [9.50–156]	B, C, P, S	B, C, P, S	S
Age (AGE, years), 30.0 [1.22 - 77.00]	C , P , S	C, P, S	P , S
Albumine (ALB, g/L), 45.0 [33.0–56.6]	C , P , S	P, S	S
Aspartate aminotransferase (AST, U/L), 23.0 [11.0–91.0]	P, S	S	S
Bilirubin (BILI, µmol/L), 9.0 [0.33–46.0]	P, S	S	S
Categorical covariates: category, N [%]	CL/F	V/F	KA
Status: Non-inhibitor, 195 [50%] / FVIII inhibitor (INH), 194 [50%]	P, S	P, S	P , S
Race : White, 244 [63%] / Black (BLK) 31 [8%] / Asian (ASN), 89 [23%] / Other (OTH), 25 [6%]	P, S	C, P, S	S

 \rightarrow **B**, **C**: covariate effect simulated for the **Based** & the **Covariate model**, respectively

 \rightarrow P, S: covariate effect tested on the parameter considering the Prespecified or the Saturated covariate set

• Regression method with a constraint on the covariate effect values $\rightarrow \Sigma |\beta_{par,cov}| \le t$

LASSO PsN algorithm flowchart

Regression method with a constraint on the covariate effect values $\rightarrow \Sigma |\beta_{par,cov}| \le t$

LASSO PsN algorithm flowchart

• Regression method with a constraint on the covariate effect values $\rightarrow \Sigma |\beta_{par,cov}| \le t$

LASSO PsN algorithm flowchart

[1] Ribbing et al. J Pharmacokinet Pharmacodyn. 2007

Heuristic search approach using principles inspired by natural selection and genetic

• Heuristic search approach using principles inspired by natural selection and genetic

Heuristic search approach using principles inspired by natural selection and genetic

Heuristic search approach using principles inspired by natural selection and genetic

Methods evaluation

• OFV, BICc & runtime

jame

- OFV = -2LL
- BICc = $-2LL + P_R x \ln(N) + P_F x \ln(n_{tot})$

 \rightarrow with LL the log likelihood, P_R the number of μ , $\beta_{par,cov}$ and dim(Ω), P_F the number of error model parameters = 1, N the number of patients and n_{tot} the total number of observations

Methods evaluation

- OFV, BICc & runtime
 - OFV = -2LL
 - BICc = -2LL + P_R x ln(N) + P_F x ln(n_{tot})

 \rightarrow with LL the log likelihood, P_R the number of μ , $\beta_{par,cov}$ and dim(Ω), P_F the number of error model parameters = 1, N the number of patients and n_{tot} the total number of observations

- CCR assessment using forest plots
 - Software: R 4.1.2, Package: PMXForest 1.2.6, PMXFrem 1.2.2
 - Number of samples: 1000

Clinical decision	Covariate effect ratios							
Relevant (R)				 				
Non-relevant significant (NRS)								
Non-relevant non-significant (NRNS)			•-					
Insufficient information significant (IIS)	-	•		 				
Insufficient information non-significant (IINS)		-	•					
Not selected (NSEL)				 				
	0.6	0.8	3	1 1	.2	1.4		

Example of one forest plot of FREM applied on the dataset simulated under the **Covariate model** with the **Saturated covariate set**

Reference subject: white individual of 70 kg, 30 years old, with an albumin level at 45 g/L, an aspartate aminotransferase level at 23 U/L, a bilirubin level at 9 μ mol/L and without FVIII inhibitor

42

Results

	Simulation case: Base model												
	Ref model	FM	LASSO	GA 150	GA 50								
		Prespecified covariate set											
OFV	24 135	24 110	19 786*	24 126	24 121	24 126	24 126						
P _R	8	24	90	9	16	9	11						
BICc	24 191	24 261	20 330*	24 188	24 225	24 188	24 200						
Runtime (h)	0.04	0.44	2.05	0.66	3.31	5.99	2.15						

	Simulation case: Base model												
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50						
OFV	24 135	24 110	19 786*	24 126	24 121	24 126	24 126						
P _R	8	24	90	9	16	9	11						
BICc	24 191	24 261	20 330*	24 188	24 225	24 188	24 200						
Runtime (h)	0.04	0.44	2.05	0.66	3.31	5.99	2.15						

	Simulation case: Base model												
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50						
			Presp	ecified covaria									
OFV	24 135	24 110	19 786*	24 126	24 121	24 126	24 126						
P _R	8	24	90	9	16	9	11						
BICc	24 191	24 261	20 330*	24 188	24 225	24 188	24 200						
Runtime (h)	0.04	0.44	2.05	0.66	3.31	5.99	2.15						

	Simulation case: Base model												
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50						
	Prespecified covariate set												
OFV	24 135	24 110	19 786*	24 126	24 121	24 126	24 126						
P _R	8	24	90	9	16	9	11						
BICc	24 191	24 261	20 330*	24 188	24 225	24 188	24 200						
Runtime (h)	0.04	0.44	2.05	0.66	3.31	5.99	2.15						

	Simulation case: Base model											
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50					
		Prespecified covariate set										
OFV	24 135	24 110	19 786*	24 126	24 121	24 126	24 126					
P _R	8	24	90	9	16	9	11					
BICc	24 191	24 261	20 330*	24 188	24 225	24 188	24 200					
Runtime (h)	0.04	0.44	2.05	0.66	3.31	5.99	2.15					

	Simulation case: Base model												
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50						
			Prespe	cified covar	iate set								
OFV	24 135	24 110	19 786*	24 126	24 121	24 126	24 126						
P _R	8	24	90	9	16	9	11						
BICc	24 191	24 261	20 330*	24 188	24 225	24 188	24 200						
Runtime (h)	0.04	0.44	2.05	0.66	3.31	5.99	2.15						

	Simulation case: Base model							Simulation case: Covariate model						
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50
		Prespecified covariate set												
OFV	24 135	24 110	19 786*	24 126	24 121	24 126	24 126	24 056	24 038	19 715*	24 056	24 039	24044	24 050
P _R	8	24	90	9	16	9	11	14	24	90	14	21	16	19
BICc	24 191	24 261	20 330*	24 188	24 225	24 188	24 200	24 148	24 189	20 259*	24 148	24 172	24 148	24 172
Runtime (h)	0.04	0.44	2.05	0.66	3.31	5.99	2.15	0.04	0.44	2.18	0.81	5.38	9.89	2.32

	Simulation case: Base model								Simulation case: Covariate model					
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50
			_	_	_	Pi	respecified	covariate s	et	_			_	
OFV	24 135	24 110	19 786*	24 126	24 121	24 126	24 126	24 056	24 038	19 715*	24 056	24 039	24 044	24 050
P _R	8	24	90	9	16	9	11	14	24	90	14	21	16	19
BICc	24 191	24 261	20 330*	24 188	24 225	24 188	24 200	24 148	24 189	20 259*	24 148	24 172	24 148	24 172
Runtime (h)	0.04	0.44	2.05	0.66	3.31	5.99	2.15	0.04	0.44	2.18	0.81	5.38	9.89	2.32
						:	Saturated o	ovariate set	ŧ					
OFV	24 135	24 103	19 786*	24 126	24 119	24 121	24 114	24 056	24 032	19 715*	24 048	24 046	24 044	24 042
P _R	8	33	90	9	17	11	15	14	33	90	15	20	16	22
BICc	24 191	24 308	20 330*	24 188	24 229	24 195	24 212	24 148	24 237	20 259*	24 146	24 173	24 148	24 181
Runtime (h)	0.04	0.44	2.05	1.55	4.51	5.99	2.09	0.04	0.44	2.18	2.09	6.33	10.73	3.71

	Simulation case: Base model								Simulation case: Covariate model					
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50
				_	_	Pi	respecified	covariate se	et	_				
OFV	24 135	24 110	19 786*	24 126	24 121	24 126	24 126	24 056	24 038	19 715*	24 056	24 039	24 044	24 050
P _R	8	24	90	9	16	9	11	14	24	90	14	21	16	19
BICc	24 191	24 261	20 330*	24 188	24 225	24 188	24 200	24 148	24 189	20 259*	24 148	24 172	24 148	24 172
Runtime (h)	0.04	0.44	2.05	0.66	3.31	5.99	2.15	0.04	0.44	2.18	0.81	5.38	9.89	2.32
						:	Saturated c	ovariate set	ŧ					
OFV	24 135	24 103	19 786*	24 126	24 119	24 121	24 114	24 056	24 032	19 715*	24 048	24 046	24 044	24 042
P _R	8	33	90	9	17	11	15	14	33	90	15	20	16	22
BICc	24 191	24 308	20 330*	24 188	24 229	24 195	24 212	24 148	24 237	20 259*	24 146	24 173	24 148	24 181
Runtime (h)	0.04	0.44	2.05	1.55	4.51	5.99	2.09	0.04	0.44	2.18	2.09	6.33	10.73	3.71

Key messages:

- FM outperformed SCM+, LASSO & GA in terms of OFV
- SCM+ & GA150 got the best BICc due to more parsimonious model
- TOP 3 of the fastest methods : FM, SCM+ & FREM

			Simulati	ion case: Bas	se model		
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50
		•	Prespe	cified covar	iate set	•	
CL/F, BW							
CL/F, AGE							
CL/F, ALB							
CL/F, AST							
CL/F, BILI							
CL/F, RACE							
CL/F, INH							
V/F, BW							
V/F, AGE							
V/F, ALB							
V/F. RACE							
V/F. INH							
KA. AGE							
KA, INH							

R NRS NRNS IIS IINS NSEL NIM

NSEL: not selected, NIM: not in the model

		Simulation case: Base model												
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50							
		•	Prespe	cified covar	iate set	•								
CL/F, BW														
CL/F, AGE														
CL/F, ALB														
CL/F, AST														
CL/F, BILI														
CL/F, RACE														
CL/F, INH														
V/F, BW														
V/F, AGE														
V/F, ALB														
V/F, RACE														
V/F, INH														
KA, AGE														
KA. INH														

NSEL: not selected, NIM: not in the model

	Simulation case: Base model													
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50							
			Prespe	cified covar	iate set	•								
CL/F, BW														
CL/F, AGE														
CL/F, ALB														
CL/F, AST														
CL/F, BILI														
CL/F, RACE														
CL/F, INH														
V/F, BW														
V/F, AGE														
V/F, ALB														
V/F, RACE														
V/F, INH														
KA, AGE														
KA, INH														

NSEL: not selected, NIM: not in the model

	Simulation case: Base model													
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50							
			Prespe	cified covar	iate set									
CL/F, BW														
CL/F, AGE														
CL/F, ALB														
CL/F, AST														
CL/F, BILI														
CL/F, RACE														
CL/F, INH														
V/F, BW														
V/F, AGE														
V/F, ALB														
V/F. RACE														
V/F, INH														
KA. AGE														
KA, INH														

NSEL: not selected, NIM: not in the model

	Simulation case: Base model													
	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50							
			Prespe	cified covar	iate set	·	·							
CL/F, BW														
CL/F, AGE														
CL/F, ALB														
CL/F, AST														
CL/F, BILI														
CL/F, RACE														
CL/F, INH														
V/F, BW														
V/F, AGE														
V/F, ALB														
V/F, RACE														
V/F, INH														
KA, AGE														
KA. INH														

NSEL: not selected, NIM: not in the model

iame

ection · Antimicr

	Simulation case: Base model													
dodelling: Evolution	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50							
	Prespecified covariate set													
CL/F, BW														
CL/F, AGE														
CL/F, ALB														
CL/F, AST														
CL/F, BILI							\leq							
CL/F, RACE														
CL/F, INH					$\sim \sim $		\leq							
V/F, BW														
V/F, AGE					$\frac{1}{2}$		\leq							
V/F, ALB				\leq		\mathbb{N}	\leq							
V/F, RACE						\mathbb{Z}								
V/F, INH						\mathbb{Z}	\leq							
KA, AGE														
KA, INH														

NSEL: not selected, NIM: not in the model jame

UMR 113 fection · Antimicrobiol

			Simula	ation case: Base	model			Simulation case: Covariate model							
ng-Evolution	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	
							Prespecified	covariate set							
CL/F, BW															
CL/F, AGE															
CL/F, ALB															
CL/F, AST							1								
CL/F, BILI														\parallel	
CL/F, RACE															
CL/F, INH															
V/F, BW															
V/F, AGE															
V/F, ALB															
V/F, RACE															
V/F, INH															
KA, AGE															
KA, INH							1								

 _
R
NRS
NRNS
IIS
IINS
NSEL
NIM

: not selected, not in the model jame

nfection · Antimicrobiols · A

			Simul	ation case: Base	model			Simulation case: Covariate model							
ng• Evolution	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	
							Prespecified	l covariate set							l
CL/F, BW															
CL/F, AGE															
CL/F, ALB															
CL/F, AST															
CL/F, BILI															
CL/F, RACE							\leq								
CL/F, INH													\parallel	\square	
V/F, BW															
V/F, AGE															
V/F, ALB						\leq	\leq					\leq	$ \geq $		NSEL: not sel
V/F, RACE															NIM: not in th
V/F, INH							\leq								l .
KA, AGE															I
KA, INH					\leq										I

not selected, t in the model jame

ection · Antimicrobials ·

			Simul	ation case: Base	model			Simulation case: Covariate model							
g · Evolution	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	
							Prespecified	covariate set							
CL/F,BW															
CL/F, AGE															
CL/F, ALB															
CL/F, AST						\leq									
CL/F, BILI															
CL/F, RACE							\leq								
CL/F, INH															
V/F, BW															
V/F, AGE															
V/F, ALB															
V/F, RACE															
V/F, INH							\leq								
KA, AGE															
KA, INH							1								

R
NRS
NRNS
IIS
IINS
NSEL
NIM

L: not selected, : not in the model

ame

CCR assessment

ļ	Simulation case: Base model									Simulat	ion case: Covari	ate model		
eg: Evolution	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50
							Prespecified	covariate set						
CL/F, BW														
CL/F, AGE														
CL/F, ALB														
CL/F, AST														
CL/E BILL														
CL/F BACE														
												•		
												•		
V/F, BW														
V/F, AGE											<u></u>			
V/F, ALB														
V/F, RACE														
V/F, INH														
KA, AGE						-						-		
KA, INH						\downarrow						\square		
			•				Saturated c	ovariate set		•			·	
CL/F, BW														
CL/F. AGE														
CL/F AST														
CL/F, ASI						\geq								
CL/F, BILI														
CL/F, RACE														
CL/F, INH														
V/F, BW														
V/F, AGE														
V/F, ALB							\square					\square		
V/F, AST														
V/F. BILI														
V/F BACE														
V/F, INFI			_										-	
KA, BW					222									
KA, AGE														
KA, ALB														
KA, AST														
KA, BILI														
KA, RACE												\leq		
	1 1			$\langle \langle \rangle \rangle$	$\langle \langle \rangle \rangle$	\sim	\sim				\sim	\sim	\sim	\sim

NRNS IIS IINS NSEL NIM

R NRS

SEL: not selected, IM: not in the model

CCR assessment

Γ	Simulation case: Base model									Simulat	ion case: Covari	ate model		
odelling• Evolution	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50	Ref model	FM	FREM	SCM+	LASSO	GA 150	GA 50
							Prespecified	l covariate set						
CL/F, BW														
CL/F, AGE														
CL/F, ALB														
CL/F, AST							1							
CL/F, BILI														
CL/F, RACE														
CL/F, INH														
V/F, BW														
V/F, AGE		Var												
V/F, ALB		кеу	mes	sages										
V/F, RACE		_		_										
V/F, INH			_	ß	→ 0. EM	EREM	SCMT I			d to cor	sistont	CCP		
KA, AGE				P _{par,cov}	≠ 0: ⊓™,	, FREM,	SCIMT , I	LA330 0	x GA let		ISISterit	CCN		
KA, INH				assess	ment in	ı line wi	th thos	e found	with th	ie refer	ence mo	odel		
				D\A/		- 0 \// - .	D							
CL/F, BW				\rightarrow DVV	on CL/r	- & V/F:	n							
CL/F, AGE				$\rightarrow AGE$	E on CL	/F & V/F	& RACE	on V/F	IIS					
CL/F, ALB														
CL/F, AST				$\rightarrow ALE$	s on v/F	: NKS								
CL/F, BILI														
CL/F, RACE				•	•		• •						_	
CL/F, INH				B	, = 0: nor	ne of co	variate	s model	ling me	ethods	conclud	le to the	e K	
V/F, BW				of one	of thes	e relati	ons							
V/F, AGE						ie retati	0113							
V/F, ALB					Full m	odeling	appro	aches:	NR or w	rith II to	conclu	de		
V/F, AST					Covari	iata cal	oction	annroa	chos: n	nainly N	ISEL on	d tho fa		
V/F, BILI					Covari	ale sei	ection	appioa	CHC3. I	nanny r	JLL an	utile it	5 V V	
V/F, RACE					additic	onal rela	ationshi	ips reta	ined we	ere NR d	or with l	l to con	clude	
V/F, INH								·						
KA, BW														
KA, AGE												\square		
KA, ALB														
KA, AST								-						
KA, BILI								-						
KA, RACE								-						
KA, INH												\leq		

FREM, LASSO & GA gave satisfactory results for CCR assessment in line with those found with FM & SCM+

- FREM, LASSO & GA gave satisfactory results for CCR assessment in line with those found with FM & SCM+
- Full modeling approaches (FM & FREM) :
 - Highly comparable results making both methods very suitable for CCR assessment
 - Better runtime than GA & LASSO
- Covariate selection approaches (SCM+, LASSO, GA150 & GA50):
 - \circ SCM+ & GA150 selected more parsimonious models than GA50 & LASSO \rightarrow better BICc
 - SCM+ is the fastest method while GA150 is the longest one

Conclusion

- FREM, LASSO & GA gave satisfactory results for CCR assessment in line with those found with FM & SCM+
- Full modeling approaches (FM & FREM):
 - Highly comparable results making both methods very suitable for CCR assessment 0
 - Better runtime than GA & LASSO 0
- Covariate selection approaches (SCM+, LASSO, GA150 & GA50):
 - SCM+ & GA150 selected more parsimonious models than GA50 & LASSO \rightarrow better BICc 0
 - SCM+ is the fastest method while GA150 is the longest one 0
- Full modeling methods vs covariate selection methods:
 - Full modeling methods \rightarrow Benefits to get a CCR evaluation of all relationships 0
 - Covariate selection methods \rightarrow Provide parsimonious model suitable for prediction BUT assuming that NSEL 0 covariates have no effect remains a strong assumption that is not necessary with full modeling methods
 - No effect OR not enough information to detect its effect \rightarrow 2 cases are not distinguished when the covariate is not selected, resulting in a loss of information
 - With the full modeling methods, we get the information whether if it is NR or II

- FREM, LASSO & GA gave satisfactory results for CCR assessment in line with those found with FM & SCM+
- Full modeling approaches (FM & FREM) :
 - Highly comparable results making both methods very suitable for CCR assessment
 - Better runtime than GA & LASSO
- Covariate selection approaches (SCM+, LASSO, GA150 & GA50):
 - \circ SCM+ & GA150 selected more parsimonious models than GA50 & LASSO \rightarrow better BICc
 - SCM+ is the fastest method while GA150 is the longest one
- Full modeling methods vs covariate selection methods:
 - \circ Full modeling methods \rightarrow Benefits to get a CCR evaluation of all relationships
 - Covariate selection methods → Provide parsimonious model suitable for prediction BUT assuming that NSEL covariates have no effect remains a strong assumption that is not necessary with full modeling methods
 - No effect OR not enough information to detect its effect → 2 cases are not distinguished when the covariate is not selected, resulting in a loss of information
 - With the full modeling methods, we get the information whether if it is NR or II
- Further evaluations are necessary to enhance the robustness of those results by using simulation frameworks with increased complexity in model structures, expanded covariate sets, and a larger number of simulated datasets

BACKUP SLIDES

Covariate correlation matrix

jame

Covariates distribution from the 389 patients included in the emicizumab population PK model development of Retout et al. (2020)

Continuous covariates	Median [min-max]	Categorical covariates	Categories	N [%]
Age (years)	30.0 [1.22 - 77.00]	Status	Non-inhibitor	195 [50%]
Body weight (kg)	69.1 [9.50-156]		FVIII inhibitor	194 [50%]
Albumin (a/l.)	45.0 [33.0-56.6]	Race	White/Caucasian	244 [63%]
, (Samin (9, 2)	1010 [0010 0010]		Black	31 [8%]
Aspartate aminotransferase (U/L)	23.0 [11.0-91.0]		Asian, including Japanese	89 [23%]
Bilirubin (µmol/L)	9.0 [0.33-46.0]		Other or unknown	25 [6%]
				23 [0%]

Emicizumab clinical trial information

	Phase III study HAVEN 1	Phase III study HAVEN 2	Phase III study HAVEN 3	Phase III study HAVEN 4	Phase I/II study
Number of patients	112	61	148	48	18
Number of PK samples per patient (median [min-max])	14 [4-17]	12 [7-17]	Arm A & D: 11 [6-14] Arm B & C: 11 [1-14]	Run-in part: 25 [25-26] Expansion part: 8 [7-9]	Cohort 1: 65 [64-71] Cohort 2: 58 [21-62] Cohort 3: 52 [30-61]
Subcutaneous dosing regimen	3 mg/kg QW for 4 weeks fb 1.5 mg/kg QW	3 mg/kg QW for 4 weeks fb 1.5 mg/kg QW	Arm A & D: 3 mg/kg QW for 4 weeks fb 1.5 mg/kg QW Arm B & C: 3 mg/kg QW for 4 weeks fb 3 mg/kg Q2W	Run-in part: 6 mg/kg Q4W Expansion part: 3 mg/kg QW for 4 weeks fb 6 mg/kg Q4W	Cohort 1: 1 mg/kg fb 0.3 mg/kg QW Cohort 2: 3 mg/k fb 1 mg/kg QW Cohort 3: 3 mg/kg QW

Parameter estimates on real data

		Base model		Covariate model				Covariate model	
Parameters (units)		value	RSE (%)	value	RSE (%)	Parameters (units)		value	RSE (%)
Fixed effects	μ _{ka} (1/day)	0.538	6.4	0.543	6.6	Covariate effects	□ CL/F, AGE	0.127	30.4
	μ _{v/F} (L)	10.933	1.6	11.138	1.6		CL/F, ALB	-0.948	22.5
	μ _{Cl/F} (L/day)	0.288	1.8	0.289	1.7		□ V/F, BLK	-0.212	20.3
Covariate effects	□ v/F, bw	1.066	2.6	0.867	6.1		□ _{V/F, AGE}	0.139	25.8
	Cl/F, BW	0.939	2.9	0.801	7.5				
Between subject variability	ω_{ka}	0.712	16.7*	0.709	15.9*				
	$\omega_{\text{V/F}}$	0.281	9.4*	0.265	8.5*				
	$\omega_{cl/F}$	0.300	9.5*	0.285	8.3*				
Error model	a - fixed (µg/mL)	0.0250	1	0.0250	1				
	b	0.147	2.0	0.147	2.0				

* Relative SE (RSE) computed for the corresponding variance

CCR assessment with multiple ratios

ame

 \rightarrow Single decision when more than one ratio (i.e. continuous covariates with P10 and P90 ratios or categorical covariates with more than 2 categories)

Case	Decision
R & & {R NRS NRNS IIS IINS} &	R
NRS & & {NRS NRNS} &	NRS
NRNS & & NRNS &	NRNS
IIS & & {NRS NRNS IIS IINS} &	IIS
IINS & & {NRS NRNS IINS} &	IINS

NLMEM and parameter estimation

ame

• Let be y_{ii} , the response of individual $i \in \{1, ..., N\}$ at sampling time t_{ii} with $j \in \{1, ..., n_i\}$:

$$y_{ij} = f(t_{ij}, \phi_i) + (a + b x f(t_{ij}, \phi_i)) x \varepsilon_{ij}$$

- $f(t_{ii}, \phi_i)$: nonlinear structural PK model
- $\phi_i = h(\mu, \eta_i, C_{\mu}\beta)$: vector of individual PK parameters for subject i
 - μ: vector of fixed effects
 - $\eta_i \sim N(0,\Omega)$: vector of random-effects of individual i, with Ω the variance-covariance matrix
 - C: vector of covariate values for the individual i
 - **β**: vector of covariate effects with $β_{parcov}$ the effect of a covariate (cov) on a parameter (par)
- $\varepsilon_{ii} \sim N(0,1)$: measurement error for the individual i, at the time t_{ii}
- a, b: additive, proportional term of the residual unexplained variability
- Log-normally distributed PK parameters to ensure positiveness
- Vector of parameters to estimate with their standard error (SE): $\theta = \{\mu, \beta, \Omega, a, b\}$
- First order conditional estimation with interaction (FOCEi) algorithm for parameters estimation
- SE derived from the covariance matrix computed as R⁻¹SR⁻¹, with R and S the Hessian and the Cross-Product Gradient matrix, respectively
- PK data analysis performed with NONMEM version 7.4

SCM and SCM+ PsN algorithm flowchart

- Forward iterative loop (par-cov relationships tested to be added in an univariate manner) followed by a backward iterative loop (par-cov relationships tested to be removed in an univariate manner)
- Additional step for SCM+ compared to SCM → reduction of the covariate scope

Koch

Full model [1,2] & FREM [3]

 All the par-cov relationships of the covariate set are estimated simultaneously

FM

 $P_{1,i} = \mu_{P1} + \beta_{P1,C1}(C_{1,i} - C_1) + \beta_{P1,C2}(C_{2,i} - C_2) + \eta_{P1,i}$ $P_{2,i} = \mu_{P2} + \beta_{P2,C1}(C_{1,i} - C_1) + \beta_{P2,C2}(C_{2,i} - C_2) + \eta_{P2,i}$

 $\begin{bmatrix} \eta_{P_{1,i}} \\ \eta_{P_{2,i}} \end{bmatrix} \sim N(\vec{0}, \Omega)$

FREM

$$\begin{array}{l} \mathsf{P}_{1,i} = \mu_{\mathsf{P1}} + \eta_{\mathsf{P1},i} \\ \mathsf{P}_{2,i} = \mu_{\mathsf{P2}} + \eta_{\mathsf{P2},i} \\ \mathsf{C}_{1,i} = \overline{\mathsf{C}}_{1} + \eta_{\mathsf{C1},i} \\ \mathsf{C}_{2,i} = \overline{\mathsf{C}}_{2} + \eta_{\mathsf{C2},i} \end{array} \qquad \begin{bmatrix} \eta_{\mathsf{P1},i} \\ \eta_{\mathsf{P2},i} \\ \eta_{\mathsf{C1},i} \\ \eta_{\mathsf{C2},i} \end{bmatrix} \sim N(\vec{\mathsf{0}}, \Omega_{FREM})$$

$$\Omega_{FREM} = \begin{pmatrix} \Omega_{par} & \Omega_{cov,par} \\ \Omega_{par,cov} & \Omega_{cov} \end{pmatrix} = \begin{pmatrix} \omega_{P_1}^2 & \omega_{P_2P_1} & \omega_{C_1P_1} & \omega_{C_2P_1} \\ \omega_{P_1P_2} & \omega_{P_2}^2 & \omega_{C_1P_2} & \omega_{C_2P_2} \\ \omega_{P_1C_1} & \omega_{P_2C_1} & \omega_{C_1}^2 & \omega_{C_2C_1} \\ \omega_{P_1C_2} & \omega_{P_2C_2} & \omega_{C_1C_2} & \omega_{C_2}^2 \end{pmatrix}$$

$$B = \begin{pmatrix} \beta_{C_1 P_1} & \beta_{C_2 P_1} \\ \beta_{C_1 P_2} & \beta_{C_2 P_2} \end{pmatrix} = \Omega_{cov, par} \Omega_{cov}^{-1}$$

Covariate modeling - 5 algorithm settings

Covariate selection methods

SCM+ Software: PsN 5.3.2 P-cutoff = 0.05 P-forward = 0.05 P-backward = 0.01*

LASSO Software: PsN 5.3.2 Start_t = 1 Step_t = 0.05 Stop_t = 10* Cutoff = 0.05

 \rightarrow fit the selected covariate model with the right relation shape

• Full modeling methods

FM Software: PsN 5.3.2 Retries = 5*

FREM Software: PsN 5.3.2