Supporting oncology phase I dose-escalation trials

Sebastian Weber
Stan4PMX Workshop
8th June 2023, Paris
Acknowledgment

- Lukas Widmer
- Lada Markovtsova
- Juan Gonzalez-Maffe
- Melodie Monod
- Paul Bürkner
Phase I dose-escalation trials in oncology

- Basic design:
 - Enroll small cohorts of (late-stage) cancer patients (N=3-6) at a candidate dosing level
 - Monitor patient cohort for ~1 cycle (4 weeks)
 - Decrease (~1/2x) / repeat same / increase dose (~2x) for next cohort
 - Iterate until a recommended dose is found – sufficiently safe & efficacious

- Trial design to find a maximum tolerated dose (MTD) are ideal for cytotoxic treatments for which efficacy and safety follow one another closely

- Novel treatments differ!
 - In many instances, longer-term tolerability must be warranted
 - Timing of dosing is critical (e.g. ramp-up of dose to avoid cytotoxic reaction of body)

- FDA project Optimus challenges current standard paradigm
Supporting ongoing dose escalation

Goal:
Explore dose regimen – response relationships in order to guide dose escalation decisions

Challenges:
- Small sample size
- Limited data availability while trial runs, in particular for latest patient cohort
- Missing/unclean data

Proposed solution:
- Simplified pharmacokinetic-pharmacodynamic (PK/PD) modeling
- PK model simplified to describe steady-state kinetics only (including reaching/leaving it)
- PK model informed from individual patient non-compartmental analysis
- Coupling of simplified PK with semi-mechanistic PD models (not today)
Brief overview of common approaches in comparison

- **Dose-response**
 - Summarizes longitudinal PK with a single metric (total dose, dose intensity)
 - Appropriate to characterize relationships in steady-state

- **K-PD**
 - Utilizes full dosing history, but no PK data at all
 - Neglects between-subject variability in PK model, but characterizes drug exposure over time

- **Simplified PK proposed here**
 - Utilizes full dosing history and *NCA estimates of key PK model parameters*
 - Accounts for *individual subject PK* and characterizes drug exposure over time
 - Simplification approach assumes linear PK and restricts reliability to *steady-state and its vicinity*

- **Full PK/PD model**
 - Best modeling approach, but can be demanding to fit along with ongoing trial
Simulated example trial scenario

- **Treatment**
 - 1 week dosing + 1 week no dosing
 - Constant dose 1, 2, 4, 8 mg
 - 4 weeks cycle

- **Using PK as outcome for simplification here:** Cmin, the concentration just before next dosing

- **Objectives for investigation**
 - Can we describe drug concentration in and around steady-state?
 - Is the sparse data sufficient to inform simplified PK model based on NCA estimates?
 - How to handle missing data accordingly.
Simulated data scenario

- **Data scenario**
 - 4 cohorts of patients
 - 3 patients per cohort
 - Partially observed data in cohort 4

- **Clearance and volume** sampled from multi-variate normal

- **PK model used is a 1-compartment model with first order absorption (oral dosing)**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1, 1</td>
<td>1</td>
<td>0.12</td>
<td>6.25</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1, 1</td>
<td>1</td>
<td>0.15</td>
<td>7.45</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1, 1</td>
<td>1</td>
<td>0.11</td>
<td>8.99</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2, 2</td>
<td>2</td>
<td>0.12</td>
<td>7.75</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2, 2</td>
<td>2</td>
<td>0.07</td>
<td>4.56</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2, 2</td>
<td>2</td>
<td>0.10</td>
<td>11.70</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2, 2</td>
<td>2</td>
<td>0.12</td>
<td>7.93</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2, 2</td>
<td>2</td>
<td>0.13</td>
<td>8.62</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>2, 2</td>
<td>2</td>
<td>0.08</td>
<td>6.45</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>3, 4, 4</td>
<td>4, 4</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>3, 4, 4</td>
<td>4, 4</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>3, 4, 4</td>
<td>4, 4</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
</tr>
</tbody>
</table>
Formula:

\[
obs_y | mi() \sim pk_conc(logFrel, \log Ka, \log Cl, \log V, \text{obs}_\text{time}, \text{dose}_\text{time}, \text{dose}_\text{amt}, \\
\text{dose}_\text{addl}, \text{dose}_\text{tau})
\]

LogFrel

\[
\log Frel \sim 1
\]

LogKa

\[
\log Ka \sim 1
\]

LogCl

\[
\log Cl \sim 0 + mi(nca_1Cl, \text{patient}_id)
\]

LogV

\[
\log V \sim 0 + mi(nca_1V, \text{patient}_id)
\]

Nca_1Cl

\[
nca_1Cl | mi() + \text{subset}(ref_cmin) + \text{index(patient}_id) \sim 1
\]

Nca_1V

\[
nca_1V | mi() + \text{subset}(ref_cmin) + \text{index(patient}_id) \sim 1
\]

- Modeling multiple outcomes per patient while using 1 NCA estimate per patient
- \text{pk}_\text{conc} is a non-linear function provided to \text{brms}
- \text{mi()} allows for missing data in outcome and model parameters
- Missing parameters are imputed with uncertainty in context of full model
- Imputation model for clearance & volume is learned from all observed data
brms model run

Formula:
\[\text{obs}_x | \text{mi()} \sim \text{pk_conc(logFrel, logKa, logCl, logV, obs_time, dose_time, dose_amt, dose_addl, dose_tau)} \]

Population-Level Effects:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Est.Error</th>
<th>l-95% CI</th>
<th>u-95% CI</th>
<th>Rhat</th>
<th>Bulk_ESS</th>
<th>Tail_ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ncalCl_Intercept</td>
<td>-2.28</td>
<td>0.11</td>
<td>-2.49</td>
<td>-2.06</td>
<td>1.00</td>
<td>5905</td>
<td>2858</td>
</tr>
<tr>
<td>ncalV_Intercept</td>
<td>1.97</td>
<td>0.08</td>
<td>1.81</td>
<td>2.13</td>
<td>1.00</td>
<td>5257</td>
<td>2799</td>
</tr>
<tr>
<td>obsy_logFrel_Intercept</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>obsy_logKa_Intercept</td>
<td>0.69</td>
<td>0.00</td>
<td>0.69</td>
<td>0.69</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>obsy_logCl_minca_lClpatient_id</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>obsy_logV_minca_lVpatient_id</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Family Specific Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Est.Error</th>
<th>l-95% CI</th>
<th>u-95% CI</th>
<th>Rhat</th>
<th>Bulk_ESS</th>
<th>Tail_ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigma_obsy</td>
<td>0.34</td>
<td>0.03</td>
<td>0.29</td>
<td>0.41</td>
<td>1.00</td>
<td>4346</td>
<td>3010</td>
</tr>
<tr>
<td>sigma_ncaCl</td>
<td>0.36</td>
<td>0.08</td>
<td>0.24</td>
<td>0.56</td>
<td>1.00</td>
<td>6124</td>
<td>2840</td>
</tr>
<tr>
<td>sigma_ncaV</td>
<td>0.27</td>
<td>0.07</td>
<td>0.18</td>
<td>0.43</td>
<td>1.00</td>
<td>5574</td>
<td>2819</td>
</tr>
</tbody>
</table>

Draws were sampled using sample(hmc). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).
Model check for cohort 1 & 2

Posterior predictive check C_{min} (dose standardized)
All observed data cohort 1 & 2
Model check for cohort 3 & partially observed cohort 4

Posterior predictive check Cmin (dose standardized)

Observed 3. cohort & partially observed 4. cohort
Phase I dose-escalation trials in oncology explore dose regimen – response relationships and require constant reassessment of dosing amount and timing.

Dose-escalation decisions rely on small sample sizes, limited data availability and unbalanced allocation to dosing regimens.

Proposal to utilize a simplified PK model:
- Goal is to describe steady state kinetics including reaching and leaving steady-state.
- Formulated on basis of nominal time and non-compartmental analysis (NCA) estimates as these are readily available during a running trial.
- Allow for missing data of outcome and/or NCA inputs.
- Accounts for individual level patient PK.

Simulated development prototype promising, but there is a lot to be done…
Thank you
References

brms model prior

Formula: `obs_y | mi() ~ pk_conc(logFrel, logKa, logCl, logV, obs_time, dose_time, dose_amt, dose_addl, dose_tau)`

priors

<table>
<thead>
<tr>
<th>prior</th>
<th>class</th>
<th>resp</th>
<th>nlpar</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal(0, log(10)/1.64)</td>
<td>Intercept</td>
<td>ncalCl</td>
<td></td>
</tr>
<tr>
<td>normal(0, log(10)/1.64)</td>
<td>Intercept</td>
<td>ncalV</td>
<td></td>
</tr>
<tr>
<td>constant(log_frel)</td>
<td>b</td>
<td>obsy</td>
<td>logFrel</td>
</tr>
<tr>
<td>constant(log_ka)</td>
<td>b</td>
<td>obsy</td>
<td>logKa</td>
</tr>
<tr>
<td>constant(1)</td>
<td>b</td>
<td>obsy</td>
<td>logCl</td>
</tr>
<tr>
<td>constant(1)</td>
<td>b</td>
<td>obsy</td>
<td>logV</td>
</tr>
<tr>
<td>normal(0, 1)</td>
<td>sigma</td>
<td>obsy</td>
<td></td>
</tr>
<tr>
<td>normal(0, 0.5)</td>
<td>sigma</td>
<td>ncalCl</td>
<td></td>
</tr>
<tr>
<td>normal(0, 0.5)</td>
<td>sigma</td>
<td>ncalV</td>
<td></td>
</tr>
</tbody>
</table>
Recovery of true model parameters

Population level parameters
True value + 50% / 90% CrIs

Variance component parameters
True value + 50% / 90% CrIs