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Context and set up

‘ODE-Based Model ‘
* Likelihood obtained by solving an ODE [1].
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* Pharmacokinetics — Michaelis-Menten
model [2].
50%
ro_ g
Yo — ayo0 §
I VinC g
Y1 = kay() ~ K,+C 5
Drug concentration
Where ¢ =22
|4 Figure 1: Michaelis-Menten Elimination Kinetics,

. relationship of concentration and clearance rate.
* Non-Linear.

e Simplified.
e Sensitive to parameter values.

12/06/2023 Stanislas du Ché 2



First Simulations
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Experimental Setting ‘

e Codein Stan.

e 8 chains on 4 cores.

* Wide priors (Naive Computational
Statistician).

* Runge-Kutta order 4/5 integrator (RK45).
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Figure 2: Running time of each chain ran.

Observations: Heterogeneous running time.
Solution: Let’s run more chains in parallel !
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Second Simulation: More chains

‘ Experimental Setting

 Codein Stan.

* 30 chains in parallel.
* Wide priors.

* RK45 integrator.

20004

Figure 3: Heterogeneous computational
time between chains.
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Second Simulation: More chains
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Figure 4: Efficiency (ESS/sec) by the
number of chain finished.

e Anditis detrimental !!

Reminder: Effective Sample Size (ESS)
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Understanding the Situation

Stiff ./ Non-stiff

°o ° ," .: ’
Stiffness of an ODE: An ODE is considered oo, K ! E ,,"
stiff if for a “small” wvariation of its . /.o’
parameters, its behavior is very different. Lo o R/ e
% :‘Oo > ,.” .
Bad consequences for non-stiff ODE \ e o

integrator (like RK45).
8 ( ) Figure 5: Intuition of the Parameter Space representation.

Chain Behaviors

e 4 possible scenarios for chain evolution in parameter space.
* So... what now ?
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Waiting for the Fastest Chains — Experimental method

N~ Importance Sampling
;Q """"""""""" i + ESS Evaluation

O—— OO = X

‘ Importance Sampling

* Discard quick but unlikely samples.
* Chain Stacking by maximizing the leave-one-out log predictive density (loo,,,) (Yao et al. 2022) [3].
* Stability of the loo,,4 as convergence diagnostic.
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Waiting for the Fastest Chains — Racing Chains Sampling

@ Importance Sampling
Q AN 'Q" + ESS Evaluation

7 N ESS > ESSiarget V
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* Keep the finished chains.

+ Drop the other ones. — BIAS ?

* Realize Mixture Draw through
Chain Stacking.
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Waiting for the Fastest Chains — Experimental Results

ka Km

method

: racing-chains 06
101 [ standara mcuc '

0.4

0.59
0.21

0.94

0.6

0.3

ﬂ

0.09 L 0.0

> 00 ﬂﬂﬁt&
@ 00 25 50 75 2 0 2 4 1 2 3
% sigma v Vm
© 3 .
20 m o
| 0.7
151 L 2] il s
LI TH 0.50 Il
101
1 |
0.25
0.5 1 :ﬂ“
0.0 izt 0 0.00 |
40 05 00 05 3.0 35 4.0 1 2 3 4
samples

Figure 6: Posterior Distribution Racing Chain (9 Stacked chains)

vs Standard MCMC (30 parallel chains).
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Experimentally:

* No bias constated when dropping chains.

* Slowest Chains in Low Density regions.
Planetary motion as other example [6].

e Stiff part of parameter space arguably
sampled (Loo,,, stability).



Waiting for the Fastest Chains — Experimental Results

(a) Standard (b) Standard . . (d) Racing-chains +
MCMC MCMC (c) Racing-chains stacking
Chains 30 9 30 (9 kept) 9
Running time (s) 1918 775 145 145
EffeCt"S’?z:amp'e 2728 1172 966 1107
Efficiency (ESS/s) 1.42 1.51 6.66 7.63

Observations:
* Gain of Computational Time.
* Smaller ESS but good enough (ESS

target
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Recap and Discussion

Recap:

* Launch more chains in parallel is detrimental in heterogeneous behavior situation.

* Racing Chains + stacking : heuristic method to gain computational time with reasonable risk.

Discussion:

e Bias introduced by dropping chains [5].
* Wide priors vs thin priors.

* Develop reliable convergence diagnostics; inspiration from unbiased Monte Carlo methods
[7,8,9]7?
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