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ODE-Based Model 

Context and set up

• Likelihood obtained by solving an ODE [1].
• Pharmacokinetics – Michaelis-Menten 

model [2].

Where 𝐶 =
𝑦1

𝑉

• Non-Linear.
• Simplified.
• Sensitive to parameter values.

Figure 1: Michaelis-Menten Elimination Kinetics, 
relationship of concentration and clearance rate.
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Experimental Setting

First Simulations

• Code in Stan.
• 8 chains on 4 cores.
• Wide priors (Naïve Computational 

Statistician).
• Runge-Kutta order 4/5 integrator (RK45).

Figure 2: Running time of each chain ran.

Observations: Heterogeneous running time.
Solution: Let’s run more chains in parallel ! 
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Second Simulation: More chains

Figure 3: Heterogeneous computational 
time between chains.

• Wait for the slowest chains.
• 2000 sec !!
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Experimental Setting
• Code in Stan.
• 30 chains in parallel.
• Wide priors.
• RK45 integrator.



Second Simulation: More chains

Figure 4: Efficiency (ESS/sec) by the 
number of chain finished.

• And it is detrimental !! 
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Reminder:  Effective Sample Size (ESS)

 



Understanding the Situation

Stiffness of an ODE: An ODE is considered 
stiff if for a “small” variation of its 
parameters, its behavior is very different. 

Bad consequences for non-stiff ODE 
integrator (like RK45).

Figure 5: Intuition of the Parameter Space representation.

Chain Behaviors
• 4 possible scenarios for chain evolution in parameter space.
• So… what now ? 
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Waiting for the Fastest Chains – Experimental method

Importance Sampling 
+ ESS Evaluation

ESS < ESStarget

Importance Sampling
• Discard quick but unlikely samples. 
• Chain Stacking by maximizing the leave-one-out log predictive density (loolpd) (Yao et al. 2022) [3]. 
• Stability of the loolpd as convergence diagnostic.
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Waiting for the Fastest Chains – Racing Chains Sampling

ESS > ESStarget

Importance Sampling 
+ ESS Evaluation

• Keep the finished chains.
• Drop the other ones.
• Realize Mixture Draw through 

Chain Stacking.

BIAS ?
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Waiting for the Fastest Chains – Experimental Results
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Figure 6: Posterior Distribution Racing Chain (9 Stacked chains) 
vs Standard MCMC (30 parallel chains).

Experimentally:
• No bias constated when dropping chains.
• Slowest Chains in Low Density regions. 

Planetary motion as other example [6].
• Stiff part of parameter space arguably 

sampled (Loolpd stability).



Waiting for the Fastest Chains – Experimental Results
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(a) Standard 
MCMC

(b) Standard 
MCMC

(c) Racing-chains
(d) Racing-chains + 

stacking
Chains 30 9 30 (9 kept) 9

Running time (s) 1918 775 145 145
Effective Sample

Size
2728 1172 966 1107

Efficiency (ESS/s) 1.42 1.51 6.66 7.63

Observations:
• Gain of Computational Time. 
• Smaller ESS but good enough (ESStarget = 1000).



Recap and Discussion
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Discussion:

• Bias introduced by dropping chains [5].

• Wide priors vs thin priors.

• Develop reliable convergence diagnostics; inspiration from unbiased Monte Carlo methods 
[7, 8, 9] ? 

Recap: 

• Launch more chains in parallel is detrimental in heterogeneous behavior situation.
 
• Racing Chains + stacking : heuristic method to gain computational time with reasonable risk. 
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