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Features to support pmx modeling

flexible base language

ODE solvers

matrix exponential

algebraic solver

DAE solver

within-chain parallelization

event schedule

PK analytical solutions

PK analytical + numerical

within-pop parallelization

bbr.bayes: R workflow

I Goal: build a workflow that’s intuitive but hackable
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I ODE-based model initially took 3 days to fit.
I Rewriting Stan code led to model fitting in 2 hours!

Drug-induced myelosuppression example

I Bound Edrug to deal with “unreasonable” parameter values the
Markov chain may encounter during warmup.

I Write the ODE as a baseline difference from y0 to reduce the
computational cost of automatic differentiation, etc.
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Tutorial papers:

I Grinsztajn et al. Bayesian workflow for disease
transmission in Stan. Statistics in medicine, 2021.

I M, Zhang and Gillespie. Bayesian modeling using Stan and
Torsten, Part I.CPT: PSP, 2022 — part II in preperation.

I Elmokadem et al. Bayesian PBPK using R/Stan/Torsten
and Julia/SciML/Turing.JL. CPT: PSP, 2022.

I Conferences, workshops, meetups, etc.

What are some elementary gaps in our workflow?
1 Tuning the ODE solver.
2 Initializing the Markov chain.
3 Picking the length of warmup and sampling phases.
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Example: planetary motion†

Let q be the planet’s position
and p its momentum.

q̇(t) = p(t)/m

ṗ(t) = − k

r3
(q − q�)

500 warmup + 500 sampling

Chain Time (s)
1 10.56
2 3.40
3 4433.93
4 181.98

†M and Gelman, Stan Case studies (2020), Gelman et al, arXiv:2011.01808 (2020)
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Example: planetary motion†

Problem is highly multimodal.

The ODE solver’s error scales as O(εtk), with t ≥ 2.

Stan’s default init: log k ∼ uniform[−2, 2]

Recommendation: use more careful initializations, e.g.
sample from prior.

†M and Gelman, Stan Case studies (2020), Gelman et al, arXiv:2011.01808 (2020)
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Example: non-linear pharmacokinetic model†

BDF RK45
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†M et al, PAGE (2021)
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What makes a good initialization for MCMC?

With a good initialization, the bias of our Monte Carlo
estimator decays faster.

Safeguards us against regions where ODE solver struggles.

But for R̂ to be reliable, we need overdispersed
initialization relative to the initial bias†

Initial Variance ≥ α+ β(Initial Bias)2

We can expect the prior to verify this property.

But also any approximation that reduces the squared bias
of the prior more than its variance.

†Gelman and Rubin. Statistical Science (1992), M et al. arXiv:2110.13017 (2022)
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What makes a good initialization?

Experiments with
pathfinder in R.†

Stan released a C++
implementation.

Population
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Picking a tolerance for the ODE solvers†

Due to solver’s precision ε1, only compute approximate likelihood

π̃(y | θ; ε1) 6= π(y | θ)

IS compares π̃(y | θ; ε1) to π̃(y | θ; ε2) ≈ π(y | θ), ε2 � ε1.

Provides a diagnostic for solver’s tuning parameters.

Plan: experiment on range of PK models and implement in
Torsten workflow.

†Timonen et al. arXiv:2205.09059 (2022)
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What are some elementary gaps in our workflow?

1 Tuning the ODE solver. X
2 Initializing the Markov chain. X
3 Picking the length of warmup and sampling phases.

(Xmeans there is a course of action)

Many-short-chains regime†

Dynamically monitor
convergence via nested R̂

Requires running many
chains (on GPU or clusters
of CPUs), which can be
challenging with Stan and
ODE-based models.

†Lao et al. arXiv:2002.01184 (2020); M et al. arXiv:2110.13017 (2022)
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