Making Bayesian pharmacometrics modeling simpler (but not too simple) with Torsten

Charles Margossian Flatiron Institute Fellow Torsten developers:

Yi Zhang

Bill Gillespie

https://github.com/metrumresearchgroup/Torsten

Features to support pmx modeling

mc-stan.org

flexible base language ODE solvers matrix exponential algebraic solver DAE solver

within-chain parallelization

Features to support pmx modeling

mc-stan.org

flexible base language ODE solvers matrix exponential algebraic solver DAE solver within-chain parallelization

event schedule PK analytical solutions PK analytical + numerical within-pop parallelization bbr.bayes: R workflow

Features to support pmx modeling

mc-stan.org

flexible base language ODE solvers matrix exponential algebraic solver DAE solver within-chain parallelization

event schedule PK analytical solutions PK analytical + numerical within-pop parallelization bbr.bayes: R workflow

▶ Goal: build a workflow that's intuitive but hackable

RESEARCH ARTICLE

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser¹, Michel J. Counotte¹, Charles C. Margossian², Garyfallos Konstantinoudis³, Nicola Low¹⁴, Christian L. Althaus¹, Julien Riou¹⁴*

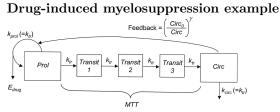
- ▶ ODE-based model initially took 3 days to fit.
- ▶ Rewriting Stan code led to model fitting in 2 hours!

RESEARCH ARTICLE

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser¹, Michel J. Counotte¹, Charles C. Margossian², Garyfallos Konstantinoudis³, Nicola Low^{1,4}, Christian L. Althaus¹, Julien Riou^{1,4}

- ▶ ODE-based model initially took 3 days to fit.
- ▶ Rewriting Stan code led to model fitting in 2 hours!



- ▶ Bound E_{drug} to deal with "unreasonable" parameter values the Markov chain may encounter during warmup.
- Write the ODE as a baseline difference from y_0 to reduce the computational cost of automatic differentiation, etc.

Tutorial papers:

- ▶ Grinsztajn et al. Bayesian workflow for disease transmission in Stan. *Statistics in medicine*, 2021.
- ▶ M, Zhang and Gillespie. Bayesian modeling using Stan and Torsten, Part I. CPT: PSP, 2022 part II in preparation.
- ▶ Elmokadem et al. Bayesian PBPK using R/Stan/Torsten and Julia/SciML/Turing.JL. *CPT: PSP*, 2022.

Tutorial papers:

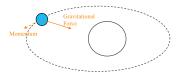
- ▶ Grinsztajn et al. Bayesian workflow for disease transmission in Stan. *Statistics in medicine*, 2021.
- ▶ M, Zhang and Gillespie. Bayesian modeling using Stan and Torsten, Part I. CPT: PSP, 2022 part II in preparation.
- ▶ Elmokadem et al. Bayesian PBPK using R/Stan/Torsten and Julia/SciML/Turing.JL. *CPT: PSP*, 2022.
- ▶ Conferences, workshops, meetups, etc.

Tutorial papers:

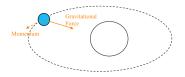
- ▶ Grinsztajn et al. Bayesian workflow for disease transmission in Stan. *Statistics in medicine*, 2021.
- ▶ M, Zhang and Gillespie. Bayesian modeling using Stan and Torsten, Part I. CPT: PSP, 2022 part II in preparation.
- ▶ Elmokadem et al. Bayesian PBPK using R/Stan/Torsten and Julia/SciML/Turing.JL. *CPT: PSP*, 2022.
- ▶ Conferences, workshops, meetups, etc.

What are some elementary gaps in our workflow?

- Tuning the ODE solver.
- **2** Initializing the Markov chain.
- O Picking the length of warmup and sampling phases.

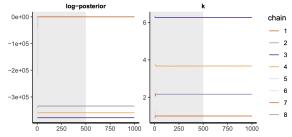


Let q be the planet's position and p its momentum.

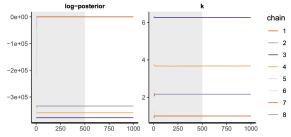


Let q be the planet's position and p its momentum. 500 warmup + 500 sampling

:(4)) =	p(t)/m	Chain	Time (s)
q(t)			1	10.56
$\dot{p}(t)$	=	$-rac{k}{r^3}(q-q_\odot)$	2	3.40
			3	4433.93
			4	181.98

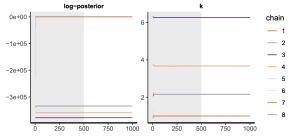


Problem is highly multimodal.



Problem is highly multimodal.

The ODE solver's error scales as $\mathcal{O}(\epsilon^t k)$, with $t \geq 2$.

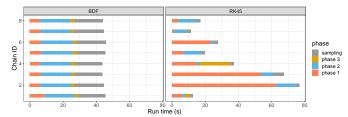


Problem is highly multimodal.

The ODE solver's error scales as $\mathcal{O}(\epsilon^t k)$, with $t \geq 2$.

Stan's default init: $\log k \sim \operatorname{uniform}[-2, 2]$

Recommendation: use more careful initializations, e.g. sample from prior.



Example: non-linear pharmacokinetic model †

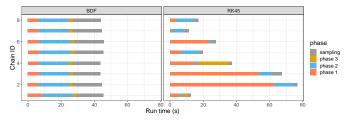
[†]M et al, *PAGE* (2021)

BDF RK45 6 phase Chain ID sampling phase 3 phase 2 phase 1 2 20 40 Run time (s) 20 40 60 80 Non-stiff Stiff

Example: non-linear pharmacokinetic model †

[†]M et al, *PAGE* (2021)

Example: non-linear pharmacokinetic model^{\dagger}



	Phase I	Phase II	Phase III	Sampling	
$\mathbf{RK45}$	m RK45	m RK45	m RK45	RK45	
\mathbf{BDF}	BDF	BDF	BDF	BDF	
Early switch	BDF	RK45	RK45	RK45	
Late switch	BDF	BDF	RK45	RK45	

[†]M et al, *PAGE* (2021)

With a good initialization, the bias of our Monte Carlo estimator decays faster.

Safeguards us against regions where ODE solver struggles.

With a good initialization, the bias of our Monte Carlo estimator decays faster.

Safeguards us against regions where ODE solver struggles. But for \hat{R} to be reliable, we need *overdispersed initialization* relative to the initial bias[†]

Initial Variance $\geq \alpha + \beta (\text{Initial Bias})^2$

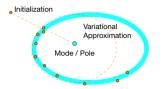
With a good initialization, the bias of our Monte Carlo estimator decays faster.

Safeguards us against regions where ODE solver struggles. But for \hat{R} to be reliable, we need *overdispersed initialization* relative to the initial bias[†]

Initial Variance $\geq \alpha + \beta (\text{Initial Bias})^2$

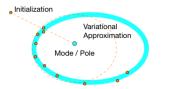
We can expect the prior to verify this property. But also any approximation that reduces the squared bias of the prior more than its variance.

What makes a good initialization?

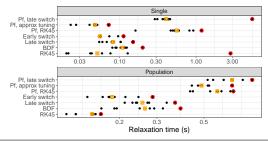


[†]Zhang et al. *JMLR* (2022), M et al. *PAGE* (2022)

What makes a good initialization?

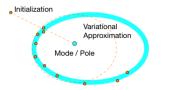


Experiments with path finder in $\mathbf{R}.^{\dagger}$



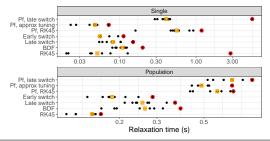
[†]Zhang et al. *JMLR* (2022), M et al. *PAGE* (2022)

What makes a good initialization?



Experiments with pathfinder in $R.^{\dagger}$

Stan released a C++ implementation.



[†]Zhang et al. JMLR (2022), M et al. PAGE (2022)

An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models

Juho Timonen¹, Nikolas Siccha¹, Ben Bales², Harri Lähdesmäki¹, and Aki Vehtari¹

[†]Timonen et al. arXiv:2205.09059 (2022)

An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models

Juho Timonen¹, Nikolas Siccha¹, Ben Bales², Harri Lähdesmäki¹, and Aki Vehtari¹

Due to solver's precision ϵ_1 , only compute approximate likelihood $\tilde{\pi}(y \mid \theta; \epsilon_1) \neq \pi(y \mid \theta)$

[†]Timonen et al. arXiv:2205.09059 (2022)

An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models

Juho Timonen¹, Nikolas Siccha¹, Ben Bales², Harri Lähdesmäki¹, and Aki Vehtari¹

Due to solver's precision ϵ_1 , only compute approximate likelihood

 $\tilde{\pi}(y \mid \theta; \epsilon_1) \neq \pi(y \mid \theta)$

IS compares $\tilde{\pi}(y \mid \theta; \epsilon_1)$ to $\tilde{\pi}(y \mid \theta; \epsilon_2) \approx \pi(y \mid \theta), \epsilon_2 \ll \epsilon_1$.

An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models

Juho Timonen¹, Nikolas Siccha¹, Ben Bales², Harri Lähdesmäki¹, and Aki Vehtari¹

Due to solver's precision ϵ_1 , only compute approximate likelihood

 $\tilde{\pi}(y \mid \theta; \epsilon_1) \neq \pi(y \mid \theta)$

IS compares $\tilde{\pi}(y \mid \theta; \epsilon_1)$ to $\tilde{\pi}(y \mid \theta; \epsilon_2) \approx \pi(y \mid \theta), \epsilon_2 \ll \epsilon_1$.

Provides a diagnostic for solver's tuning parameters.

[†]Timonen et al. arXiv:2205.09059 (2022)

Picking a tolerance for the ODE solvers †

An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models

Juho Timonen¹, Nikolas Siccha¹, Ben Bales², Harri Lähdesmäki¹, and Aki Vehtari¹

Due to solver's precision ϵ_1 , only compute approximate likelihood

 $\tilde{\pi}(y \mid \theta; \epsilon_1) \neq \pi(y \mid \theta)$

IS compares $\tilde{\pi}(y \mid \theta; \epsilon_1)$ to $\tilde{\pi}(y \mid \theta; \epsilon_2) \approx \pi(y \mid \theta), \epsilon_2 \ll \epsilon_1$.

Provides a diagnostic for solver's tuning parameters.

Plan: experiment on range of PK models and implement in Torsten workflow.

[†]Timonen et al. arXiv:2205.09059 (2022)

- 0 Tuning the ODE solver. \checkmark
- 0 Initializing the Markov chain. \checkmark
- Picking the length of warmup and sampling phases.

(\checkmark means there is a course of action)

- 0 Tuning the ODE solver. \checkmark
- ② Initializing the Markov chain. \checkmark
- Picking the length of warmup and sampling phases.

(\checkmark means there is a course of action)

Many-short-chains $\operatorname{regime}^{\dagger}$

[†]Lao et al. arXiv:2002.01184 (2020); M et al. arXiv:2110.13017 (2022)

- 0 Tuning the ODE solver. \checkmark
- ② Initializing the Markov chain. \checkmark
- Picking the length of warmup and sampling phases.

(\checkmark means there is a course of action)

Many-short-chains regime[†] Dynamically monitor convergence via nested \widehat{R}



- 0 Tuning the ODE solver. \checkmark
- ② Initializing the Markov chain. \checkmark
- Picking the length of warmup and sampling phases.

(\checkmark means there is a course of action)

Many-short-chains $\operatorname{regime}^{\dagger}$

Dynamically monitor convergence via nested \widehat{R}

Requires running many chains (on GPU or clusters of CPUs), which can be challenging with Stan and ODE-based models.

[†]Lao et al. arXiv:2002.01184 (2020); M et al. arXiv:2110.13017 (2022)