A new computation method of uncertainty at finite distance for non linear mixed effects models

Mélanie Guhl, Julie Bertrand, Emmanuelle Comets

INSERM UMR 1137, Infection, Antimicrobials, Modelling, Evolution
Team BIPID

June, 8th 2023
Longitudinal data are widely collected in clinical trials.

Drug concentration profiles

Viral dynamic profiles

NEWS-2 score data

Non linear mixed effects models (NLMEM) are a powerful tool to model observations of individual $i = 1, \ldots, N$ at time $j = 1, \ldots, n_i$

$y_{ij} = f(\psi_i, t_{ij}) + b \epsilon_{ij}$ with $\epsilon_{ij} \sim N(0, \Sigma)$

$\psi_i = \mu e^{\beta COV_i} e^{\eta_i}$ with $\eta_i \sim N(0, \Omega)$

$\theta = \{\mu, \beta, \Omega, b\}$

1 Guhl et al., J. Pharmacokinet. Pharmacodyn. 2022
2 Lingas et al., J. Antimicrob. Chemother. 2022
Uncertainty in the Frequentist paradigm

The population parameter vector θ is not considered as a random variable but as a **fixed parameter**

$\hat{\theta}_{ML}$ Maximum likelihood estimator (MLE)

Estimation methods: Stochastic Approximation Expectation Maximization (SAEM)3, First-Order Conditional Estimation (FOCE)4, ...

The standard error (SE) of the MLE can be computed asymptotically based on the **Fisher Information Matrix (FIM)**, the inverse of which is the lower bound of the asymptotic variance covariance matrix$^5,^6$

$$FIM = (-\partial^2_\theta l(\hat{\theta}_{ML}))$$

$$SE(\hat{\theta}_{ML}) = FIM^{-\frac{1}{2}}$$

Problem: when working at finite distance, using the FIM underestimates the SE of NLMEM leading to inflated type I error of tests7

5Cramer, Princeton Univ. Press. (1946)

Uncertainty in the Frequentist paradigm

Other approaches following estimation of the MLE with a frequentist method (e.g. SAEM):

- Bootstrap 8
- Sampling Importance Resampling method (SIR) 9
 - simulation of $s = 1, \ldots, S^1$ parameter vectors θ in a proposal distribution $p(\theta)$
 - computation of importance ratio (IR) for each sample
 \[IR_s = \frac{I(y|\theta_s)/I(y|\hat{\theta}_{ML})}{PDF(\theta_s)/PDF(\hat{\theta}_{ML})} \]
 - resampling of $s = 1, \ldots, S^2$ new samples by weighting the S^1 previous samples with their IR_s

8Thai et al., J. Pharmacokinet. Pharmacodyn. 2013
Bayesian paradigm: *a posteriori* distribution

The population parameter vector θ is here considered as a random variable with a prior

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

We want to estimate the posterior distribution of θ

Under some regularity conditions on the prior, Bayesian credible sets of a certain level α will asymptotically be confidence sets of level α (Bernstein von-Mises theorem\(^{10}\))

→ Ueckert et al. proposed to use the standard deviation (SD) of the posterior distribution as a proxy for the SE\(^{11}\)

This proposal has been implemented via HMC algorithm in *stan* (method hereafter called Post) and used on a BE simulation study \(^{12}\)

\(^{10}\)van der Vaart, Cambridge Univ. Press. 1998

\(^{11}\)Ueckert et al., PAGE. 2015

\(^{12}\)Loingeville et al., AAPS J, 2020
Algorithm proposal - Concept

Proposal: use a Metropolis Hastings (MH) algorithm (already embedded in SAEM) and draw \textit{a posteriori} distributions of the estimator of θ to compute its SD within the SAEM algorithm

\rightarrow We end up with a frequentist MLE and a bayesian estimation of the SE in SAEM, computed in parallel

Convergence phase of the SAEM algorithm (K2 last iterations):
\begin{itemize}
 \item Simulation step
 \item Stochastic approximation
 \item Maximisation step
 \item \textbf{Bayesian step}
\end{itemize}

The Bayesian step uses the frequentist estimations as parameters of the proposal kernel, but does not influence the frequentist estimation
Algorithm proposal - Bayesian step

- One MH chain is sampled at each iteration k of SAEM, from $K1+1$ to $K1+K2$ (convergence phase)
- Chain of length M
- prior on θ: $p(.)$
- At each iteration m ($m = 1, ..., M$)
 - we draw a sample $\theta^{(m)}$ in the kernel $q(.)$
 - $\theta^{(m)}$ is accepted with probability
 \[
 \alpha = \min\left(1, \frac{l(y | \theta^{(m)}, \tilde{\psi}^{(m)}) p(\theta^{(m)}) q_{\theta}(\theta^{(m-1)})}{l(y | \theta^{(m-1)}, \tilde{\psi}^{(m-1)}) p(\theta^{(m-1)}) q_{\theta}(\theta^{(m)})}\right)
 \]
 with $\tilde{\psi}^{(m)}$: mean of 50 samples of $\psi^{(m)}$ in the distribution $p(\psi | \theta^{(m)})$
Iteration of SAEM

1 Sim – Stoch Approx - Max

K1

K1

K1+1 Sim – Stoch Approx – Max – MH : \(\theta^{K1+1}_1, \theta^{K1+1}_2, ..., \theta^{K1+1}_M \)

K1+2 Sim – Stoch Approx – Max – MH : \(\theta^{K1+2}_1, \theta^{K1+2}_2, ..., \theta^{K1+2}_M \)

K2

... ...

K1+K2 Sim – Stoch Approx – Max – MH : \(\theta^{K1+K2}_1, \theta^{K1+K2}_2, ..., \theta^{K1+K2}_M \)

Chain used to compute SD
First set of simulations in the context of Bioequivalence (BE) studies
Simulation settings

Our set of simulations is inspired by pharmacokinetic BE studies13,14,15 Theophylline data

- 1000 datasets
- 1 compartment of distribution with linear absorption and elimination

\[
C(t) = \frac{D}{V} \frac{ka}{\frac{Cl}{V} - ka} \left(\exp(-ka \ t) - \exp\left(-\frac{Cl}{V} \ t\right) \right)
\]

\[
\begin{align*}
\mu_{ka} &= 1.5 \\
\mu_{Cl} &= 0.04 \\
\mu_{V} &= 0.5 \\
\beta_{ka} &= 0 \\
\beta_{Cl} &= \log(1.25) \\
\beta_{V} &= \log(1.25) \\
\omega_{ka} &= 0.22 \\
\omega_{Cl} &= 0.11 \\
\omega_{V} &= 0.22
\end{align*}
\]

- Proportional error model: \(b = 0.1 \)
- Designs

Rich
\(N = 150 \) (75 in each treatment arm)
\(n = 10 \): \(t \in \{0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12, 24\} \) hours

13 Dubois et al., Stat. Med. 2011
14 Loingeville et al., AAPS J, 2020
15 Mollenhoff et al., Biostatistics, 2022
Simulation settings

Our set of simulations is inspired by pharmacokinetic BE studies13,14,15

Theophylline data

- 1000 datasets
- 1 compartment of distribution with linear absorption and elimination

\[
C(t) = \frac{D}{V} \frac{ka}{\frac{Cl}{V} - ka} \left(\exp(-ka \ t) - \exp\left(-\frac{Cl}{V} \ t\right) \right)
\]

\[
\begin{align*}
\mu_{ka} &= 1.5 \\
\mu_{Cl} &= 0.04 \\
\mu_{V} &= 0.5
\end{align*}
\]

\[
\begin{align*}
\beta_{ka} &= 0 \\
\beta_{Cl} &= \log(1.25) \\
\beta_{V} &= \log(1.25)
\end{align*}
\]

\[
\begin{align*}
\omega_{ka} &= 0.22 \\
\omega_{Cl} &= 0.11 \\
\omega_{V} &= 0.22
\end{align*}
\]

- Proportional error model: \(b = 0.1 \)
- Designs

\begin{tabular}{|c|c|}
\hline
Rich & Sparse \\
\hline
N = 150 & N = 12 (6 in each treatment arm) \\
n = 10 & n = 3: \ t \in \{0.25, 3.5, 24\} \text{ hours} \\
\hline
\end{tabular}

13 Dubois et al., Stat. Med. 2011
14 Loingeville et al., AAPS J, 2020
15 Mollenhoff et al., Biostatistics, 2022
Evaluation

- 95% coverage rates for each element of θ
- Acceptation rates (proportion of accepted samples)

We compare the results obtained with our method with those obtained from:
- the FIM (Asympt)
- Sampling Importance Resampling (SIR)
- Post
Settings

SIR (module in saemix16)
- $S^1 = 1000$ samples
- $S^2 = 500$ resamples

Post
- 3 chains
- 1500 iterations (including 500 iterations of warm up)
- Initial values: estimations of saemix
- Gaussian prior: $p(\cdot) = \mathcal{N}(\theta, \Sigma)$
 Σ diagonal with $\sigma_i = 0.3 * \mu_i$ for all μ, $\sigma_i = 0.5$ otherwise

MH
- Gaussian prior: $p(\cdot) = \mathcal{N}(\theta, \Sigma)$
 Σ diagonal with $\sigma_i = 0.3 * \mu_i$ for all μ, $\sigma_i = 0.5$ otherwise
- Gaussian kernel: $q(\cdot) = \mathcal{N}(\hat{\theta}_k, \inf * \hat{FIM}_k^{-1})$ with $\inf = 1, 1.5, 2$
- $M = 100$

16https://github.com/saemixdevelopment
95% coverage rates

\[\hat{H}_2 \]

\[\hat{H}_C \]

\[\hat{H}_V \]

\[\beta_{ka} \]

\[\beta_{ci} \]

\[\beta_{vi} \]

\[x: N=150, n=10 \]
95% coverage rates

x: N=150, n=10 / o: N=12, n=3
Post: data sets with $\hat{R}>1.05$ were not used (27% for sparse scenario) - SIR: 15.3% failure for sparse scenario
95% coverage rates

\[
\begin{align*}
\hat{R}_{\text{v}} & \\
\beta_{\text{v}} & \\
\end{align*}
\]

\[
\begin{align*}
\hat{R}_{\text{c}} & \\
\beta_{\text{c}} & \\
\end{align*}
\]

x: N=150, n=10 / o: N=12, n=3
Post: data sets with \(\hat{R} > 1.05 \) were not used (27% for sparse scenario) - SIR: 15.3% failure for sparse scenario
95% coverage rates

\[H_{0a} \quad H_{0i} \quad H_{0v} \]

\[\beta_{0a} \quad \beta_{0i} \quad \beta_{0v} \]

\(x: N=150, n=10 \quad o: N=12, n=3 \)

Post: data sets with \(\hat{R} > 1.05 \) were not used (27% for sparse scenario) - SIR: 15.3% failure for sparse scenario
95% coverage rates

x: N=150, n=10 / o: N=12, n=3
Post: data sets with $\hat{R}>1.05$ were not used (27% for sparse scenario) - SIR: 15.3% failure for sparse scenario
95% coverage rates

x: N=150, n=10 / o: N=12, n=3
Post: data sets with $\hat{R}>1.05$ were not used (27% for sparse scenario) - SIR: 15.3% failure for sparse scenario
95% coverage rates

x: N=150, n=10 / o: N=12, n=3
Post: data sets with $\hat{R}>1.05$ were not used (27% for sparse scenario) - SIR: 15.3% failure for sparse scenario
95% coverage rates

\[\hat{a}_{kl} \]

\[\hat{a}_{cl} \]

\[\hat{a}_{lv} \]

\[\hat{b} \]

x: N=150, n=10 / o: N=12, n=3
Post: data sets with \(\hat{R} > 1.05 \) were not used (27% for sparse scenario) - SIR: 15.3% failure for sparse scenario
95% coverage rates

x: N=150, n=10 / o: N=12, n=3
Post: data sets with $\hat{R}>1.05$ were not used (27% for sparse scenario) - SIR: 15.3% failure for sparse scenario
95% coverage rates

x: N=150, n=10 / o: N=12, n=3
Post: data sets with $\hat{R}>1.05$ were not used (27% for sparse scenario) - SIR: 15.3% failure for sparse scenario
Summary

- On rich design (N=150, n=10)
 → Controlled coverage rates with Asympt, SIR, Post and MH
- On sparse design (N=12, n=3)
 → Asympt, SIR and MH have coverage rates under the target, especially for variance parameters
 → Post has coverage rates over the target
 ⇒ More work is needed to develop a reliable method of SE computation on sparse data

- An inflation factor of 2 on the on the kernel variance allows MH to give more controlled coverage rates on small sample sizes
 - Acceptation ratio are decreased
 - best coverage rates are not met at "The asymptotically optimal acceptance rate is 0.234 under quite general conditions"17
- On more challenging settings (e.g. high inter individual variability)
 - MH method has coverage rates under the target and below Asympt
 - Acceptation ratio collapse → good tool to diagnose when MH is too challenged
- Inflation of prior distribution or increase of the chains length do not change the results with MH (not shown)

Perspectives

- Calibration of the kernel
 - decouple fixed effects and variance parameters, univariate conditional distribution, random walk
 → Lucie Fayette internship

- Implementation of MH in saemix on the CRAN

- Extension of our new method of computations of SE to categorical data: one issue is that we cannot compute the linearised likelihood in that case
Thank you