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Outline

• Workflow frameworks improve
- efficiency
- reliability
- reproducibility
- etc.

• Practical workflows
- shortcuts and workflow as engineering

• Iterative process
- as in software development
- as a learning process
- models as experiments

• The argument against the iterative model building
- and the counter argument

• Software assisted workflows
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Workflow term

• Saunders and Blundstone, 1921. Railway engineering.
• Started to get more popular in 1990s based on Google

books ngram viewer
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Bioinformatics and scientific workflow in 2000’s

Curcin & Ghanem (2008). Scientific workflow systems - can one size fit all?
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Bioinformatics and scientific workflow in 2000’s

Deelman et al (2017). The Future of Scientific Workflows
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Workflows in general

• Workflow frameworks improve
- efficiency
- reliability
- reproducibility
- etc.
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Bayesian workflow

• Savage (2016). An introduction to Bayesian modelling in
Stan for economists.

- “The Bayesian workflow”
• Gabry, Simpson, Vehtari, Betancourt, and Gelman (2017).

Visualization in Bayesian workflow.
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Box & Youle, 1955
The Exploration and Exploitation of Response Surfaces: An
Example of the Link between the Fitted Surface and the Basic
Mechanism of the System
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Box 1976: Science and Statistics
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Box 1976: Science and Statistics
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Box 1987

From the talk slides ‘Some aspects of statistical design in quality
improvement”
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Talts (2018)

StanCon 2018 intro
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Bayesian workflows
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Workflows and sub-workflows
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Model building as software development process
Boehm (1996, 1988)
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Example: Birthdays
https://avehtari.github.io/casestudies/Birthdays/birthdays.html

Aki.Vehtari@aalto.fi – @avehtari@bayes.club

https://avehtari.github.io/casestudies/Birthdays/birthdays.html


Prototypes, shortcuts, and workflow as engineering

• When building prototypes or making initial experiments, we
can use shortcuts

- the final models tested with sufficient rigor
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Example: Birthdays
https://avehtari.github.io/casestudies/Birthdays/birthdays.html
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Different requirements and workflow as cooking

• Make a sandwich out of available ingredients
- a generic model that is useful for almost any data
- normal linear model is not probably the best dish given the

ingredients, but can be delicious anyway

• Follow a recipe to make a dish with pre-listed ingredients
- many different pre-described models that match your data

and task
- e.g. rstanarm, brms, shinybrms

• Develop a new recipe to be used in a fine dining restaurant
- may require several iterations (depending on how much the

customers are willing to pay)
- write the model in probabalistic programming language
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Iterative workflow as a learning process

Box (1976)

• Incremental learning reduces cognitive load
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Example: Golf putting

Example by Andrew Gelman CC-BY-NC 4.0
https://mc-stan.org/users/documentation/case-studies/golf.html
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Example: Golf putting
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Models as experiments

Box (1976)

• New facts are learned by using the models
• New learned facts can be used to choose the next model
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Example: Birthdays
https://avehtari.github.io/casestudies/Birthdays/birthdays.html
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Software development process vs.
Models as experiments

• The end result may also be a series of models
- it may be useful to report results of simpler experiments, too
- presenting the results of many models is also part of the

workflow
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Cost and benefit of model building
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Cost and benefit of model building

Stick figure and silhoutte from Weech et al. (2014) doi:10.1167/14.12.10. Photo CC0.
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Cost and benefit of model building

• Sufficient accuracy for model and computation
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Argument against iterative model building

• Double dipping, inference after model selection, etc.

Counter arguments

• Integration over the model space

+ filter zero weight models

• Missing perfect calibration is not a problem
• Diagnostics
• Use well specified models and priors (they are inseparable)

Watch and listen more (4.5h) in

• Model assesment, selection and averaging
https://www.youtube.com/watch?v=Re-2yVd0Mqk

• Use of reference models in variable selection
https://www.youtube.com/watch?v=N0ce8J8slFY

• These are a few of my favorite inference diagnostics
https://www.youtube.com/watch?v=vLx6lUlZ0fc
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Filtering

from Riha, Siccha & Vehtari (2023)
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Computer assisted workflows

• PDFs and blog posts with checklists are not enough

• Code generation and libraries (e.g. brms, bambi)
• Computational graphs (e.g., drake, targets, scientific

workflow software)
• Diagnostics (e.g. posterior, bayesplot, priorsense, loo,

projpred, ArviZ)
• More robust inference and diagnostics with diagnostics

- automated sub-workflows
- allow shortcuts with automated diagnostic, checking

whether the shortcut was a safe choice
• Interplay between software, diagnostics, and

documentation
- different levels of detail

- just-in-time learning

• See also “What do we need from a PPL to support
Bayesian workflow?” by Bob Carpenter statmodeling.stat.
columbia.edu/2021/10/22/carpenter-slides-papers-prob-prog-2021/
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Computer assisted workflows

• There are software for sub-workflows
• Software for the whole is very challenging as there are so

many possibilities

- LLMs (e.g. ChatGPT) can only help when there has been
enough material in the internet for them to learn, and even
then they may provide miselading recommendations

Aki.Vehtari@aalto.fi – @avehtari@bayes.club



Computer assisted workflows

• There are software for sub-workflows
• Software for the whole is very challenging as there are so

many possibilities
- LLMs (e.g. ChatGPT) can only help when there has been

enough material in the internet for them to learn, and even
then they may provide miselading recommendations

Aki.Vehtari@aalto.fi – @avehtari@bayes.club



On Bayesian workflow

• Workflow frameworks improve
- efficiency
- reliability
- reproducibility
- etc.

• Practical workflows
- shortcuts and workflow as engineering

• Iterative process
- as in software development
- as a learning process
- models as experiments

• The argument against the iterative model building
- and the counter argument

• Computer assisted workflow + different levels of
information
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