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Outline

e Workflow frameworks improve
- efficiency
- reliability
- reproducibility
- efc.
Practical workflows
- shortcuts and workflow as engineering
Iterative process
- as in software development
- as alearning process
- models as experiments

The argument against the iterative model building
- and the counter argument

Software assisted workflows
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Workflow term

e Saunders and Blundstone, 1921. Railway engineering.

e Started to get more popular in 1990s based on Google
books ngram viewer
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Bioinformatics and scientific workflow in 2000’s

Training set Modelling

Integration Pre-processing | I Validation Storage
(data-parallel)

Staging Test set

Fig. 1. Workflow example

Curcin & Ghanem (2008). Scientific workflow systems - can one size fit all?
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Bioinformatics and scientific workflow in 2000’s

Experiment Workflow (DAC)
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Figure 1: Science workflow for the comparison of a molecular dynamics simulation with a high-energy X-ray
microscopy of the same material system includes three interrelated computational and experimental workflows.

Deelman et al (2017). The Future of Scientific Workflows
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Workflows in general

e Workflow frameworks improve
- efficiency
- reliability
- reproducibility
- efc.
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Bayesian workflow

e Savage (2016). An introduction to Bayesian modelling in
Stan for economists.

- “The Bayesian workflow”

e Gabry, Simpson, Vehtari, Betancourt, and Gelman (2017).
Visualization in Bayesian workflow.
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Box & Youle, 1955

The Exploration and Exploitation of Response Surfaces: An
Example of the Link between the Fitted Surface and the Basic
Mechanism of the System

SPECULATIVE STEEPEST EMPIRICAL THEORETICAL
ASCENT SURFACE SURFACE
FITTING STUDY
EXPERIMENT «... e e

THEORY == === = =
KNOWLEDGE

FIGURE 7. DIAGRAMATIC REPRESENTATION OF PROCESS OF EXPERIMENTAL
ITERATION.
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Box 1976: Science and Statistics

A. The Advancement of Learning
A(1) An lteration Between Theory and Practice
A(2) A Feedback Loop
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Box 1976: Science and Statistics

Data analysis, a subiteration in the process of inves-
tigation, is illustrated here.

TENTATIVE | INFERENCE| TENTATIVE
MODEL CRITICISM | ANALYSIS
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Box 1987

From the talk slides ‘Some aspects of statistical design in quality
improvement”
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Talts (2018)

StanCon 2018 intro
Bayesian Workflow
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Bayesian workflows
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Workflows and sub-workflows
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Model building as software development process

Boehm (1996, 1988)
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Figure 2. Spiral model of the software process.
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Example: Birthdays

https://avehtari.github.io/casestudies/Birthdays/birthdays.html
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https://avehtari.github.io/casestudies/Birthdays/birthdays.html

Prototypes, shortcuts, and workflow as engineering

* When building prototypes or making initial experiments, we
can use shortcuts

- the final models tested with sufficient rigor
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Example: Birthdays

https://avehtari.github.io/casestudies/Birthdays/birthdays.html
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https://avehtari.github.io/casestudies/Birthdays/birthdays.html

Different requirements and workflow as cooking

¢ Make a sandwich out of available ingredients

- a generic model that is useful for almost any data
- normal linear model is not probably the best dish given the
ingredients, but can be delicious anyway

Aki.Vehtari@aalto.fi — @avehtari@bayes.club



Different requirements and workflow as cooking

¢ Make a sandwich out of available ingredients
- a generic model that is useful for almost any data
- normal linear model is not probably the best dish given the
ingredients, but can be delicious anyway
¢ Follow a recipe to make a dish with pre-listed ingredients
- many different pre-described models that match your data
and task
- e.g. rstanarm, brms, shinybrms
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Different requirements and workflow as cooking

¢ Make a sandwich out of available ingredients
- a generic model that is useful for almost any data
- normal linear model is not probably the best dish given the
ingredients, but can be delicious anyway
¢ Follow a recipe to make a dish with pre-listed ingredients
- many different pre-described models that match your data
and task
- e.g. rstanarm, brms, shinybrms
¢ Develop a new recipe to be used in a fine dining restaurant
- may require several iterations (depending on how much the
customers are willing to pay)
- write the model in probabalistic programming language
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lterative workflow as a learning process

A. The Advancement of Learning
A(1) An lteration Between Theory and Practice
A(2) A Feedback Loop
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Box (1976)

¢ Incremental learning reduces cognitive load
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Example: Golf putting

Data on putts in pro golf
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Example by Andrew Gelman CC-BY-NC 4.0
https://mc-stan.org/users/documentation/case- studies/golf.html
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https://mc-stan.org/users/documentation/case-studies/golf.html

Example: Golf putting

Fitted logistic regression
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Example: Golf putting

Two models fit to the golf putting data
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Example: Golf putting

Probability of success
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Checking already-fit model to new data

¢ Old data
* New data

0.0

Distance from hole (feet)
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Example: Golf putting

Checking already-fit model to new data
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Example: Golf putting

Checking model fit

0.4 0.6 0.8 1.0

Probability of success

0.2

0.0
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Models as experiments

A. The Advancement of Learning
A(1) An lteration Between Theory and Practice
A(2) A Feedback Loop

PRACTICE
DATA

DEDUCTION INDUCT IO
HYPOTHESES
MODEL \
CONJECTURE
THEORY
IDEA

Box (1976)

¢ New facts are learned by using the models
* New learned facts can be used to choose the next model
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Example: Birthdays

https://avehtari.github.io/casestudies/Birthdays/birthdays.html
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Software development process vs.
Models as experiments

e The end result may also be a series of models

- it may be useful to report results of simpler experiments, too
- presenting the results of many models is also part of the
workflow
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Cost and benefit of model building

Aki.Vehtari@aalto.fi — @avehtari@bayes.club



Cost and benefit of model building
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Cost and benefit of model building

Aki.Vehtari@aalto.fi — @avehtari@bayes.club



Cost and benefit of model building

Stick figure and silhoutte from Weech et al. (2014) doi:10.1167/14.12.10. Photo CCO.
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Cost and benefit of model building

e Sufficient accuracy for model and computation
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Argument against iterative model building

¢ Double dipping, inference after model selection, etc.
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https://www.youtube.com/watch?v=Re-2yVd0Mqk
https://www.youtube.com/watch?v=N0ce8J8slFY
https://www.youtube.com/watch?v=vLx6lUlZ0fc

Argument against iterative model building
¢ Double dipping, inference after model selection, etc.

Counter arguments

Aki.Vehtari@aalto.fi — @avehtari@bayes.club


https://www.youtube.com/watch?v=Re-2yVd0Mqk
https://www.youtube.com/watch?v=N0ce8J8slFY
https://www.youtube.com/watch?v=vLx6lUlZ0fc

Argument against iterative model building
¢ Double dipping, inference after model selection, etc.

Counter arguments

¢ Integration over the model space
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Argument against iterative model building
¢ Double dipping, inference after model selection, etc.

Counter arguments

¢ Integration over the model space
+ filter zero weight models
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Argument against iterative model building
¢ Double dipping, inference after model selection, etc.

Counter arguments

¢ Integration over the model space
+ filter zero weight models
¢ Missing perfect calibration is not a problem
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Argument against iterative model building
¢ Double dipping, inference after model selection, etc.

Counter arguments

¢ Integration over the model space

+ filter zero weight models
¢ Missing perfect calibration is not a problem
¢ Diagnostics
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https://www.youtube.com/watch?v=Re-2yVd0Mqk
https://www.youtube.com/watch?v=N0ce8J8slFY
https://www.youtube.com/watch?v=vLx6lUlZ0fc

Argument against iterative model building
¢ Double dipping, inference after model selection, etc.

Counter arguments

¢ Integration over the model space
+ filter zero weight models
¢ Missing perfect calibration is not a problem
¢ Diagnostics
¢ Use well specified models and priors (they are inseparable)
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https://www.youtube.com/watch?v=Re-2yVd0Mqk
https://www.youtube.com/watch?v=N0ce8J8slFY
https://www.youtube.com/watch?v=vLx6lUlZ0fc

Argument against iterative model building
¢ Double dipping, inference after model selection, etc.

Counter arguments

¢ Integration over the model space
+ filter zero weight models
¢ Missing perfect calibration is not a problem
¢ Diagnostics
¢ Use well specified models and priors (they are inseparable)

Watch and listen more (4.5h) in

* Model assesment, selection and averaging
https://www.youtube.com/watch?v=Re-2yVdOMgk

e Use of reference models in variable selection
https://www.youtube.com/watch?v=N0ce8J8sIFY

* These are a few of my favorite inference diagnostics
https://www.youtube.com/watch?v=vLx6IUIZ0fc
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from Riha, Siccha & Vehtari (2023)



Computer assisted workflows

* PDFs and blog posts with checklists are not enough
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statmodeling.stat.columbia.edu/2021/10/22/carpenter-slides-papers-prob-prog-2021/
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Computer assisted workflows

e PDFs and blog posts with checklists are not enough
e Code generation and libraries (e.g. brms, bambi)
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Computer assisted workflows

e PDFs and blog posts with checklists are not enough

e Code generation and libraries (e.g. brms, bambi)

e Computational graphs (e.g., drake, targets, scientific
workflow software)
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Computer assisted workflows

PDFs and blog posts with checklists are not enough
Code generation and libraries (e.g. brms, bambi)
Computational graphs (e.g., drake, targets, scientific
workflow software)

Diagnostics (e.g. posterior, bayesplot, priorsense, loo,
projpred, ArviZ)
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Computer assisted workflows

PDFs and blog posts with checklists are not enough
Code generation and libraries (e.g. brms, bambi)
Computational graphs (e.g., drake, targets, scientific
workflow software)
Diagnostics (e.g. posterior, bayesplot, priorsense, loo,
projpred, ArviZ)
More robust inference and diagnostics with diagnostics
- automated sub-workflows
- allow shortcuts with automated diagnostic, checking
whether the shortcut was a safe choice
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Computer assisted workflows

e PDFs and blog posts with checklists are not enough
e Code generation and libraries (e.g. brms, bambi)
e Computational graphs (e.g., drake, targets, scientific
workflow software)
¢ Diagnostics (e.g. posterior, bayesplot, priorsense, loo,
projpred, ArviZ)
* More robust inference and diagnostics with diagnostics
- automated sub-workflows
- allow shortcuts with automated diagnostic, checking
whether the shortcut was a safe choice
¢ Interplay between software, diagnostics, and
documentation
- different levels of detalil
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Computer assisted workflows

e PDFs and blog posts with checklists are not enough
e Code generation and libraries (e.g. brms, bambi)
e Computational graphs (e.g., drake, targets, scientific
workflow software)
¢ Diagnostics (e.g. posterior, bayesplot, priorsense, loo,
projpred, ArviZ)
* More robust inference and diagnostics with diagnostics
- automated sub-workflows
- allow shortcuts with automated diagnostic, checking
whether the shortcut was a safe choice
¢ Interplay between software, diagnostics, and
documentation
- different levels of detalil
- just-in-time learning
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Computer assisted workflows

e PDFs and blog posts with checklists are not enough
e Code generation and libraries (e.g. brms, bambi)
e Computational graphs (e.g., drake, targets, scientific
workflow software)
¢ Diagnostics (e.g. posterior, bayesplot, priorsense, loo,
projpred, ArviZ)
* More robust inference and diagnostics with diagnostics
- automated sub-workflows
- allow shortcuts with automated diagnostic, checking
whether the shortcut was a safe choice
¢ Interplay between software, diagnostics, and
documentation
- different levels of detail
- just-in-time learning
¢ See also “What do we need from a PPL to support
Bayesian workflow?” by Bob Carpenter statmodeling.stat.
columbia.edu/2021/10/22/carpenter-slides-papers-prob-prog-2021/
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Computer assisted workflows

e There are software for sub-workflows

e Software for the whole is very challenging as there are so
many possibilities
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Computer assisted workflows

* There are software for sub-workflows
e Software for the whole is very challenging as there are so
many possibilities
- LLMs (e.g. ChatGPT) can only help when there has been
enough material in the internet for them to learn, and even
then they may provide miselading recommendations
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On Bayesian workflow

e Workflow frameworks improve

- efficiency

- reliability

- reproducibility

- efc.
Practical workflows

- shortcuts and workflow as engineering
Iterative process

- as in software development
- as alearning process
- models as experiments

The argument against the iterative model building
- and the counter argument

Computer assisted workflow + different levels of
information
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